scholarly journals Influence of binder type and process parameters on the compression properties and microbial survival in diclofenac tablet formulations

2011 ◽  
Vol 47 (4) ◽  
pp. 845-854 ◽  
Author(s):  
John Oluwasogo Ayorinde ◽  
Oludele Adelanwa Itiola ◽  
Oluwatoyin Adepeju Odeku ◽  
Michael Ayodele Odeniyi

The influence of binder type and process parameters on the compression properties and microbial survival in diclofenac tablet formulations were studied using a novel gum from Albizia zygia. Tablets were produced from diclofenac formulations containing corn starch, lactose and dicalcium phosphate. Formulations were analyzed using the Heckel and Kawakita plots. Determination of microbial viability in the formulations was done on the compressed tablets of both contaminated and uncontaminated tablets prepared from formulations. Direct compression imparted a higher plasticity on the materials than the wet granulation method. Tablets produced by wet granulation presented with a higher crushing strength than those produced by the direct compression method. Significantly higher microbial survival (p< 0.05) was obtained in formulations prepared by direct compression. The percent survival of Bacillus subtilis spores decreased with increase in binder concentration. The study showed that Albizia gum is capable of imparting higher plasticity on materials and exhibited a higher reduction of microbial contaminant in the formulations. The direct compression method produced tablets of reduced viability of microbial contaminant.

1970 ◽  
Vol 2 (2) ◽  
pp. 76-80
Author(s):  
Tajnin Ahmed ◽  
Muhammad Shahidul Islam ◽  
Tasnuva Haque ◽  
Mohammad Abusyed

In the present study sustained release diclofenac sodium matrix tablets were prepared using Kollidon SR polymer. Hydroxypropyl methylcellulose (HPMC 15 cps) and poly ethylene glycol (PEG-600) polymers respectively were used in formulating tablets prepared by direct compression and wet granulation methods. The polymers were used to explore the release pattern of the drug into the dissolution media. The tablets were also prepared in various shapes (caplet oval, round oval and flat oval). A comparatively higher release rate of drug was obtained from the polymer HPMC 15 cps at 10% concentration for directly compressed matrix tablet than those containing 20% of HPMC after a definite period of time. In wet granulation process, 10% PEG-600 containing tablets showed a better release than those containing 20% PEG. The drug release was also found to be sustained in case of wet granulation method than that of the direct compression method. Again the caplet shaped tablets in case of direct compression method showed better release rate of drug than those of the round oval and flat oval shaped tablets. Thus the result of this study shows that the proper selection of the percentage of polymer and the suitable shape of tablet and proper manufacturing method can provide a greater opportunity in designing sustained release dosage forms. Key words: Matrix tablet; release pattern; direct compression; wet granulation; PEG 600; Kollidon SR.DOI: 10.3329/sjps.v2i2.5828Stamford Journal of Pharmaceutical Sciences Vol.2(2) 2009: 76-80


2021 ◽  
Vol 2 (3) ◽  
Author(s):  
Nagina Gulab Belali ◽  
Anis Y. Chaerunisaa ◽  
Taofik Rusdiana

Microcrystalline cellulose was isolated from rami (Boehmeria Nivea L. Gaud), and applied as disintegrant in tablets of dimenhydrinate, made by direct compression and wet granulation. The aim of this study is to produce dimenhydrinate tablets with Microcrystalline Cellulose Rami (MCC Rami) isolated from Rami (Boehmeria Nivea L. Gaud), as a disintegrant and assess the effect of MCC Rami and Granulation technique on physical properties of drug such as, disintegration time, drug release and dissolution. Formulations of dimenhydrinate 100mg tablets were prepared with a combination of mannitol and lactose as a filler and MCC Rami as disintegrant in a concentration of 10-20%. The formulas were directly compressed or were compressed into tablets after wet granulation. The mechanical properties, drug release, physical properties and effects of process parameters, methods of applying disintegrant in tablet formulas were examined. A significant difference in disintegration time of tablets that were produced by direct compression and wet granulation was seen, that can be attributed to the porous structure of granules that enhanced fast disintegration, which had eventually improved dissolution and drug release. F1 and F2 with MCC Rami and physical mixture of MCC Rami with crosspovidone as a disintegrant that were directly compressed disintegrated in 79 and 72 seconds respectively thats not a significant difference, however when MCC was applied in an intragranular way its disintegration time is 67 seconds. The results showed that the method of disintegrant application and press of tableting has a significant effect on drug release and dissolution.Keywords : Microcrystalline Cellulose, wet granulation, disintegrant, Boehmeria Nivea L. Gaud.


2021 ◽  
Vol 4 (4) ◽  
pp. 333-344
Author(s):  
Johnson Ajeh Isaac ◽  
Kokonne Elizabeth Ekere ◽  
Ekeh Ezekiel ◽  
Isa Hayatu Galadima ◽  
Rashida Abdulahi ◽  
...  

Traditionally, the leafy part of Andrographis paniculata and Moringa oleifera have been widely reported to manage hypertension. Investigation of its pharmacological actions justifies its use. As part of formulation studies to standardize them, this study focused on their compaction and compression properties. Compacts equivalent to 250 mg of A. paniculata and M. oleifera were produced by compressing powders and granules at various compression pressure. Results show that M. oleifera met the WHO limit for ash values. Relative density values for granulated batches were higher, while their moisture content values were lower when compared to those of direct compression. The result from Heckel plots shows that batches deform mainly by plastic flow. For Kawakita plots, values of 1/b show that batches containing microcrystalline cellulose were less cohesive. The plot of tensile strength signifies that granulated batches achieved maximum crushing strength faster at low pressure. Formulations containing maize starch were shown to have higher percent porosity, and granulated batches gave higher values for apparent density-pressure relationship and lower friability values. Tablets produced by the wet granulation method showed better compression and compaction properties than those formulated by direct compression.


2014 ◽  
Vol 1060 ◽  
pp. 58-61
Author(s):  
Vipaluk Patomchaiviwat ◽  
Suchada Piriyaprasarth ◽  
Bunyarit Chaisomboonphan ◽  
Chitatharinth Limpoemwuttiporn ◽  
Pornsuda Nuamnoi

The aim of this study was to investigate the modification of black glutinous rice starch (BGRS) as tablet filler. The black glutinous rice was treated with NaCl and NaOH to obtain BGRS. The native BGRS was modified by pregelatinizaion and prepared as co-composite and used as filler in tablet formulation compared with Starch 1500®. Propranolol was used as a model drug. The properties of tablets including disintegration time were evaluated. Interestingly, the disintegration times of the native BGRS was less than 90s which was faster than Starch 1500®. The results suggest that the native BGRS would be used in fast disintegrating tablets. While the disintegration times of pregelatinized BGRS was more than 30 min. Thus, the pregelatinized BGRS might be used for sustained release tablet. For the co-composite method, PVP K90 in the concentration of 1, 3, 5, 7 and 9 % w/w was incorporated with BGRS. The tablets of the co-composite producing by direct compression method were compared with tablets producing by wet granulation method using PVP K90 as binder. In concentration of 3% w/w PVP K90, the co-composite was comparable to wet granulation method in term of hardness and disintegration time. Thus, it could be used as direct compression filler in pharmaceutical field.


Author(s):  
Niranjan Patra Ch ◽  
Satya Prakash Singn ◽  
Hemant Kumar P ◽  
Vimala Devi M

The dried root of Asparagus racemosus is widely used as mild antihypertensive and tranquilizer. The objective of the present research was to study the original flowability, compressibility and compactibility of Asparagus racemosus root powder and develop its tablet formulations by wet granulation and direct compression technology. The consolidation behavior of drug and tablet formulations were studied by using Heckel and Leuenberger equation. Asparagus racemosus root powder showed very poor flowability and compactibility. Kawakita analysis revealed improved flowability for formulations prepared by direct compression and wet granulation technique. The Heckel plot showed that Asparagus racemosus powder is soft in nature and poor in die filling. Granules showed higher degree of plasticity and fragmentation than powder and direct compression formulations. The compression susceptibility parameter for compact formed by direct compression and wet granulation technique indicated that the maximum crushing strength is reached faster at lower pressures of compression as opposed to Asparagus racemosus powder. From this study, it is concluded that desired flowability, compressibility and compactibility of Asparagus racemosus root powder can be obtained by direct compression and wet granulation technique


2020 ◽  
Vol 10 (5) ◽  
pp. 264-273
Author(s):  
Nkemakolam Nwachukwu ◽  
Edwin Aboje Ubieko

This study is aimed at evaluating the disintegrant properties of starches obtained from cassava (Manihot esculenta), sweet potato (Ipomoea batatas) and yellow corn (Zea mays). Matured tubers of cassava and potato were peeled, cut into smaller pieces, wet milled and their slurries washed severally with distilled water to obtain cassava and potato starches respectively. Matured seeds of yellow corn were steeped in distilled water for 24 h, wet milled and washed to separate the starch from the cellulose. The starches were dried at 50 ˚C after which they were characterized using standard methods. The starches at 10 % w/w were applied as disintegrants in the formulation of metronidazole tablets using wet granulation technology. Corn starch (British Pharmacopoeia) at 10 % w/w was used as comparing standard. The ibuprofen granules were evaluated for their micromeritic properties and thereafter compressed into ibuprofen tablets. Evaluation of the ibuprofen tablets for their physical properties, assay and dissolution studies were done using British Pharmacopoeia methods. Results showed that the materials extracted were starches, and they had a poor flow. The ibuprofen granules were flowable and compressible. Ibuprofen tablets compressed from these granules had good physical properties: minimal weight variation (604.00 ± 0.04 – 606.00 mg ± 0.03%), hardness (5.32 ± 0.41 – 6.33 ± 0.64 kgF), disintegration time < 15.00 min and friability < 1.00%. Assay and dissolution of metronidazole from the tablets complied with British Pharmacopoeia criteria. Cassava, potato, and yellow corn starches served as good disintegrants in ibuprofen tablet formulations.  Keywords: Disintegrant, starch, cassava, potato, corn, ibuprofen tablets


2019 ◽  
Vol 7 (3) ◽  
pp. 46-53
Author(s):  
Anupam Kumar Sachan

Objective: The main objective of this study is comparative study of natural and synthetic superdisintegrants in orodispersible Metformin tablet by using direct compression method and wet granulation method. Method: Orodispersible Metformin tablet were prepared by wet granulation method and direct compression method by using different synthetic and natural superdisintegrants. Orodispersible tablets (ODTs) have received more interest in the pharmaceutical industry for their easy to use and self medication. ODTs overcome the problem of dysphagia (difficulty in swallowing) in the all group age of patients and advantage particularly for the paediatric and geriatric patients. Metformin hydrochloride (Hcl) is an orally administered antihyperglycemic agent, used in the management of non-insulin dependent (type-2) diabetes mellitus. Metformin orodispersible tablet is prepared by using two methods i.e. direct compression method and wet granulation method. Both methods are applied to prepare Orodispersible Metformin tablet. Orodispersible tablet of Metformin was prepared by using superdisintegrants from both natural and synthetic origin. In natural superdisintegrants we used the mucilage of Fenugreek and Lepidium sativum. In synthetic superdisintegrants we used crospovidone and sodium starch glycolate. Conclusion: In direct compression and wet granulation method final blend and granules were evaluated the flow properties like bulk density, tapped density, compressibility index, hausner’s ratio and angle of repose. The values of precompression parameter evaluated were found to be within the prescribed limit and indicated good flow properties. The data obtained from the post compression methods was studied. Other parameters such as wetting time, water absorption ratio were also evaluated. The formulation (F5) containing 10% crospovidone prepared by wet granulation method was found the optimize formulation. Keywords: Metformin Hcl, Orodispersible tablets, Superdisintegrants, Direct Compression, and Wet granulation Objective: The main objective of this study is comparative study of natural and synthetic superdisintegrants in orodispersible Metformin tablet by using direct compression method and wet granulation method. Method: Orodispersible Metformin tablet were prepared by wet granulation method and direct compression method by using different synthetic and natural superdisintegrants. Orodispersible tablets (ODTs) have received more interest in the pharmaceutical industry for their easy to use and self medication. ODTs overcome the problem of dysphagia (difficulty in swallowing) in the all group age of patients and advantage particularly for the paediatric and geriatric patients. Metformin hydrochloride (Hcl) is an orally administered antihyperglycemic agent, used in the management of non-insulin dependent (type-2) diabetes mellitus. Metformin orodispersible tablet is prepared by using two methods i.e. direct compression method and wet granulation method. Both methods are applied to prepare Orodispersible Metformin tablet. Orodispersible tablet of Metformin was prepared by using superdisintegrants from both natural and synthetic origin. In natural superdisintegrants we used the mucilage of Fenugreek and Lepidium sativum. In synthetic superdisintegrants we used crospovidone and sodium starch glycolate. Conclusion: In direct compression and wet granulation method final blend and granules were evaluated the flow properties like bulk density, tapped density, compressibility index, hausner’s ratio and angle of repose. The values of precompression parameter evaluated were found to be within the prescribed limit and indicated good flow properties. The data obtained from the post compression methods was studied. Other parameters such as wetting time, water absorption ratio were also evaluated. The formulation (F5) containing 10% crospovidone prepared by wet granulation method was found the optimize formulation. Keywords:


Author(s):  
Nausheen Tariq Siddiqui ◽  
Ramla Binte Baber ◽  
Rsfi Akhtar Sultan ◽  
Iqbal Azhar ◽  
Waseemuddin Ahmed ◽  
...  

Background: Pectin, a naturally occurring polysaccharide is more than a food additive and has got amazing properties as a gelling agent and as a binder. Objective: The current research entails the extraction and identification of pectin from peels of selected fruits mango (Magnifera indica) and banana (Musa paradisiaca) by direct heating and using alcohol as precipitating agent. The potential of pectin as a binding agent in tablet formulation was evaluated by screening its micromeritics and post compression properties. Method: quadruple formulations of ibuprofen with crude peel pectin extracted from mango and banana in concentration of 50, 75, 100 and 125 mg respectively were employed in the tablet manufacture process by wet granulation method. Results: Successful formulation of tablet was done with the extracted pectin from the two fruit peels. The micromeritics properties showed good binding and flowing properties. An increase in concentration of pectin increased the hardness and also the dissolution of tablets up to a certain extent. The disintegration time was suitable for all formulations. Conclusion: It was concluded that pectin extracted from mango and banana peels can be used as a super disintegrating agent in pharmaceutical formulations, where needed.


2011 ◽  
Vol 197-198 ◽  
pp. 127-130 ◽  
Author(s):  
Vipaluk Patomchaiviwat ◽  
Piriyaprasarth Suchada ◽  
Koorattanasiri Popporn ◽  
Kanoknirumdom Supaporn ◽  
Rattanasiha Achara

The purpose of this study was to investigate the disintegrating properties of native arrowroot starch and pregelatinized arrowroot starch in comparison with corn starch and sodium starch glycolate (Explotab®). Tablets were prepared by direct compression. The tablet formulations contained dibasic calcium phosphate as filler and magnesium stearate as lubricant. Each starch at various concentrations between 2-10 % w/w was used in formulation as disintegrant. The swelling volume and weight of starches and disintegration time of tablets were evaluated. At 2% w/w concentration of starch, the pregelatinizaed starch provided disintegration time faster than the native starch (2.5 times). The disintegration time of 2% w/w pregelatinized arrowroot starch was comparable to Explotab and faster than that of native starch. The disintegration time of native starch at the concentration of 4, 6 and 10 %w/w was comparable to that of corn starch and Explotab®. Native arrowroot starch and pregelatinized arrowroot starch could be used as effective disintegrants in tablet formulation.


Sign in / Sign up

Export Citation Format

Share Document