scholarly journals Evaluation of xerogels of cassava and cocoyam starches as dry granulation binders and disintegrants in directly compressed paracetamol tablet formulations

Author(s):  
Sylvester Okhuelegbe Eraga ◽  
Ogochukwu Augustina Meko ◽  
Magnus Amara Iwuagwu

The physicochemical properties of excipients play vital roles in the process of tablet manufacture. A comparative evaluation of the binding and disintegrant properties of xerogels of cassava and cocoyam starches with microcrystalline cellulose (MCC) in paracetamol tablet formulations was investigated. Cassava and cocoyam starches were extracted from their tubers following standard procedures. Xerogels of both starches were prepared and used to prepare batches of paracetamol granules for direct compression into tablets at concentrations of 3.8, 7.6 and 11.4 %w/w and with 7.6 %w/w MCC for comparison. Granules were analysed for their flow properties and drug-excipient compatibility and the tablets were evaluated for their tablets properties. The paracetamol granules prepared with the xerogel powders were comparable in flow properties with those made with MCC. Differential Scanning Calorimetry and Fourier Transform Infrared analyses revealed no interaction between the xerogel powders and paracetamol. Increase in concentrations of the xerogel powders led to an increase in hardness, wetting time, water sorption, disintegration time, drug release and a decrease in friability of the tablets. Tablets formulated with the starch xerogel powders met compendial requirements at 7.6 %w/w concentration. The study confirms the potentials of xerogels of cassava and cocoyam starches as dry granulation binders/disintegrants. Tablets made with the xerogel powders are superior to those made with MCC in terms of disintegration time but MCC produces harder and less friable tablets, as a superior binder.

2007 ◽  
Vol 57 (1) ◽  
pp. 73-86 ◽  
Author(s):  
Gbenga Alebiowu ◽  
Oludele Itiola

Influence of process variables on release properties of paracetamol tablets A 23 factorial experimental design has been used to quantitatively study individual and interaction effects of the nature of binder (N), binder concentration (c) and relative density of tablet (d) on the disintegration time (DT) and dissolution times, t1, t50 and t90, of paracetamol tablet formulations. The factorial design was also used to study the quantitative effects of pregelatinization of starch binders on these parameters, i.e., N, c and d. In general, the most common ranking of the individual effects on DT, t1, t50 and t90 for native/native, pregelatinized/pregelatinized and native/pregelatinized starch binder formulations was c > d > N. For interaction effects, the most common ranking was N-c > c-d > N-d for all formulations. The results generally showed that c can considerably affect DT, t1, t50 and t90 of the tablets.


2021 ◽  
Vol 16 (2) ◽  
pp. 111-117
Author(s):  
B.B. Mohammed ◽  
E.J. John ◽  
G.T. Abdulsalam ◽  
K.P. Bahago

Background: Tablets must be able to release the active drug in the gastrointestinal tract for absorption. The release profile of solid pharmaceutical dosage formulations can be quantified by assessing the disintegration and dissolution times tests. Binders are adhesives either from sugar or polymeric material that are added to tablet formulations to provide the cohesiveness required for the bonding together of the granules under compaction to form tablets.Objective: The objective of the study was to formulate and assess ibuprofen tablets using different concentrations of binders (Acacia and Gelatin).Methods: The granules were prepared using wet granulation method and analysed for flow properties based on USP/NF protocols. After granule compression, the tablets release profiles were thereafter assessed via the tablet dissolution and disintegration tests.Results: Weight variation, thickness and diameter were within the acceptable values for all batches indicative of a uniform flow. Batches with binder concentrations of 10 % and 20 % failed disintegration test due to a disintegration time above 15 min while the release rate for batches 1 and 4 was about 88 % in 60 min as against the other batches whose release rate was less than 50 % in 60 min as a result of increasing their binder concentrations.Conclusion: The study concluded that increasing the concentration of acacia and gelatin above 5% led to a decrease in percentage of drug released and an increase in disintegration time above 30 mins because 5% batches gave the best release profiles.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Frank Kumah Adjei ◽  
Yaa Asantewaa Osei ◽  
Noble Kuntworbe ◽  
Kwabena Ofori-Kwakye

The disintegrant potential of native starches of five new cassava (Manihot esculenta Crantz.) varieties developed by the Crops Research Institute of Ghana (CRIG) was studied in paracetamol tablet formulations. The yield of the starches ranged from 8.0 to 26.7%. The starches were basic (pH: 8.1–9.9), with satisfactory moisture content (≤15%), swelling capacity (≥20%), ash values (<1%), flow properties, and negligible toxic metal ion content, and compatible with the drug. The tensile strength (Ts), crushing strength (Cs), and friability (Ft) of tablets containing 5–10% w/w of the cassava starches were similar (p>0.05) to those containing maize starch BP. The disintegration times of the tablets decreased with increase in concentration of the cassava starches. The tablets passed the disintegration test (DT ≤ 15 min) and exhibited faster disintegration times (p>0.05) than those containing maize starch BP. The disintegration efficiency ratio (DER) and the disintegration parameter DERc of the tablets showed that cassava starches V20, V40, and V50 had better disintegrant activity than maize starch BP. The tablets passed the dissolution test for immediate release tablets (≥70% release in 45 min) with dissolution rates similar to those containing maize starch BP.


INDIAN DRUGS ◽  
2014 ◽  
Vol 51 (10) ◽  
pp. 23-28
Author(s):  
M Kopparam ◽  
◽  
TV Kumar ◽  
DB Anantha Narayana ◽  
R Nandeesh

Ayurvedic formulary of India specifies the dose of Hingwastak churna to be 3-6 grams per day. It is difficult to swallow churna for patients. The objective of the present study was to develop Hingwastak churna granules and tablets with addition of organoleptic additives to improve the patient compliance. Granules and tablet formulations were developed by dry granulation (slugging) technique using different binders and other excipients. The granules were evaluated for angle of repose, tapped densities, compressibility index, organoleptic studies and stability study. The tablets were evaluated for weight uniformity, thickness, hardness, friability and disintegration time. Among the binding agents used 10% Avicel, CaCO3 and starch produced better granules with sufficient hardness and good flow properties. All the volunteers concurrently accepted the taste of Hingwastak churna granule formulation. Suitable formulation strategy can overcome the existing problem of Hingwastak churna.


2019 ◽  
Vol 9 (2) ◽  
pp. 160-169
Author(s):  
Rada Santosh Kumar ◽  
T. Naga Satya Yagnesh

The current scenario deals with the study of fast dissolving tablets for the patients suffering from swallowing, sickness ,etc.  The present investigation involves in the evaluation of starch tartrate as a superdintegrant in the formulation of fast dissolving tablets of poorly soluble drugs employing 23factorial design. Starch tartrate was synthesized by esterification process. The synthesized starch tartrate was subjected to physical and micromeritic evaluation. All fast dissolving tablets were evaluated for drug content, hardness, friability, disintegration time and other dissolution characteristics like percent dissolved in 5 min (PD5), dissolution efficiency in 5 min (DE5%) and first order rate constant(K1). The starch tartrate prepared was found to be fine, free flowing slightly crystalline powder. Starch tartrate exhibited good swelling in water.Fourier transform infrared spectra (FTIR) and Differential scanning calorimetry (DSC) study indicated the absence of interaction between ibuprofen and starch tartrate. All the fast dissolving tablets formulated employing starch tartrate were of good quality with regard to drug content (200±5%), hardness (3.6–3.9 kg/sq. cm), and friability (0.12-0.15%). The optimised formulation F2 has the least disintegration time i.e., 9±0. 03s. The in–vitro wetting time was less (i.e., 60s) in optimized formulation F2. The water absorption ratio of the formulated tablets was found to be in the range of 27.53±0.12 to 69.75±0.18%. The cumulative drug dissolved in the optimized formulation F2 was found to be 100.17±0.56% in 5 min. Starch tartrate was found to be a superdisintegrant which enhanced the dissolution efficiency with the ibuprofen and hence it could be used in the formulation of fast dissolving tablets to bring immediate release of the contained drug within 5 minutes. Keywords: Fast dissolving, Superdisintegrant, Starch tartrate, Dissolution efficiency.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Kidan Haily Desta ◽  
Ebisa Tadese ◽  
Fantahun Molla

This study is aimed at evaluating the binding effect of Acacia etbaica gum in granule and tablet formulations using paracetamol as a model drug. Some physicochemical properties of the purified gum such as pH, the presence of tannin and dextrin, solubility, viscosity, loss on drying, total ash value, water solubility index, swelling power, moisture sorption, and powder flow properties were investigated. Paracetamol granules were prepared using wet granulation method at 2%, 4%, 6%, and 8% w / w of the Acacia etbaica gum and compared with granules prepared with reference binders (PVP K-30 and Acacia BP) in similar concentrations. The granules were characterized for bulk and tapped densities, compressibility index and Hausner ratio, angle of repose, flow rate, and friability. Finally, the prepared granules were compressed into tablets and evaluated for different tablet characteristics: weight uniformity, thickness, diameter, crushing strength, tensile strength, friability, disintegration time, and in vitro release profile. The physicochemical characterization revealed that tannins and dextrin are absent in the gum, and the gum has acidic pH. Both the moisture content and total ash values were within the official limits. Furthermore, the gum was found to be soluble in cold and hot water but insoluble in organic solvent and exhibited a shear thickening viscosity profile and excellent flow properties with excellent compressibility. The granules prepared with the gum of Acacia etbaica and reference binders showed good particle size distribution and excellent flow and compressibility properties. All the prepared tablets passed pharmacopeial specifications with respect to their uniformity of weight, thickness, and disintegration time. Tablets formulated with Acacia etbaica gum and acacia BP meet the compendial specification for friability at binder concentrations more than 2%. Drug release properties of all the batches formulated with Acacia etbaica, PVP, and acacia BP complied with the pharmacopeial specification. It can be concluded that the gum of Acacia etbaica could be explored as an alternative excipient for its binder effect in granule and tablet formulations.


2021 ◽  
Vol 901 ◽  
pp. 22-27
Author(s):  
Kanokporn Burapapadh ◽  
Narumon Changsan ◽  
Chutima Sinsuebpol ◽  
Phennapha Saokham

Dictyophora indusiata known as bamboo mushroom is an edible mushroom in Genus Dictyophora, Family Phallaceae that could produce highly viscous mucilage encased in the peridium. The viscous mucilage is clear-colorless hydrocolloid with high viscosity and high adhesive nature which made it possible to be developed into pharmaceutical excipients. This research work aimed at the application of the mucilage as a tablet binder. The mucilage was prepared as redispersible powder by lyphilization before used. The dried mucilage could be effectively used as a binder in paracetamol tablet formulations both as dry and wet binder. Increasing of the dried mucilage amount caused the stronger tablet with higher disintegration time. The optimum concentrations of the dried mucilage in tablet formulations were 2.0% w/w as dry binder and 1.0% w/w as wet binder. The obtained tablets revealed low friability and fast disintegration time. The drug dissolution was conformable to USP37 standard and comparable to that of commercial product. Accordingly, the Dictyophora indusiata mucilage could be functionally used as a tablet binder


Author(s):  
Abeer Ahmed Kassem ◽  
Gihan Salah Labib

<p><strong>Objective: </strong>Development of sublingual fast dissolving lyophilized almotriptan tablets, to enhance its pre-gastric absorption and so alleviating the gastrointestinal dysmotility that is commonly associated with migraineurs.</p><p><strong>Methods: </strong>Primary almotriptan lyophilized tablets (Alm-lyotab), were prepared using polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), gelatin, or sodium alginate, as a bulk forming agent and mannitol as a disintegrant, cryoprotectant and taste improver. Physical properties, wetting time, <em>in vitro</em> dissolution and disintegration behaviour, were investigated. A combination of PVP, gelatin and chitosan in different ratios with mannitol were developed and characterised for further improvement. Optimised formula was examined by scanning electron microscope (SEM), differential scanning calorimetry (DSC) and Fourier-transform infrared spectroscopy (FTIR).</p><p><strong>Results: </strong>Both PVP and gelatin primary formulations showed elegant appearance with fast <em>in vitro</em> disintegration time of 5.67 and 5.64 sec, short wetting time of 4.06 and 4.05 sec, respectively, and high <em>in vitro</em> release rate of about 80% after 1 min, thus they were selected for further improvement. Optimised formula from polymer blend formulations (F8) which consisted of PVP: gelatin: chitosan in a ratio of its constituting solutions of 1:5:0.5, exhibited an elegant appearance, drug content of 98.75 %, <em>in vivo</em> disintegration time of 1.85 sec and complete drug release within 1 min. SEM micrographs revealed spongy, highly porous structure. DSC results indicated the presence of the drug in its crystalline form. FTIR studies revealed no interaction between the drug and excipients.</p><p><strong>Conclusion: </strong>Sublingual instantly dissolving Almo-lyotab was successfully developed and may constitute an advance in the management of acute migraine attacks.</p>


2020 ◽  
Vol 19 (3) ◽  
pp. 459-465
Author(s):  
Chukwuemeka P. Azubuike ◽  
Uloma N. Ubani-Ukoma ◽  
Abiola R. Afolabi ◽  
Ibilola M. Cardoso-Daodu

Purpose: To evaluate the super-disintegrant potentials of acid modified Borassus aethiopum starch (AMS) in comparison with native starch (NS) and commercial disintegrant sodium starch glycolate (SSG). Methods: Compatibility of AMS with paracetamol powder was evaluated using Fourier transform infrared (FTIR) spectrophotometry. Seven batches of paracetamol granules and tablets were prepared by wet granulation. AMS and NS were employed as disintegrants at concentrations of 2.43, 4.86 and 9.72 %w/w, respectively while 4.86 %w/w SSG was used as standard disintegrant. All the batches of the granules were compressed under the same compression settings. The properties of the granules as well as those of the tablets were assessed. Results: AMS was compatible with paracetamol powder as no noticeable interaction was observed in FTIR study. The paracetamol tablets formulated using AMS as disintegrant demonstrated satisfactory friability, weight uniformity, hardness, and superior disintegration characteristics to the formulations containing NS and SSG as disintegrant. Even at a lower concentration (2.43 %w/w), AMS possessed better disintegrant property than NS and SSG. AMS and NS had dimensionless disintegrant quantity of 1.447 and 0.005, respectively. As expected, increase in AMS concentration showed a decrease in disintegration time. Conclusion: AMS could be a potential low-cost super-disintegrant in formulation of paracetamol tablets. Keywords: Acid modified starch, Borassus aethiopum, Disintegrant, Compatibility


Author(s):  
Rika Yulia ◽  
Aditya Trias Pradana ◽  
Sylvia Silvanus Sie ◽  
Fitria Atika Suri

Objective: This research was conducted to obtain several formulation and evaluate the physical characteristics of the soybean Glycine max (L.) Merr Detam II variety tablets.Methods: Detam II varieties of soybean (G. max (L.) Merr.) were cleaned and grinded into 30 mesh-sized powder. Weighed soybean powder and internal phase of excipients (based on the formula) mixed by a Y-cone mixer until homogeneous, and then continue with dry granulation process. Granules formed, then sieved into 16 mesh size, and then, the characteristics examined. Dried granules then mixed with magnesium stearate and silicon dioxide using a drum mixer and compressed into tablets. Physical characteristics of tablets measured at 0, 4, 7, 14, 21, and 28 days.Results: Evaluation was done for particle size distribution, moisture content (MC), flow properties, weight uniformity, friability, hardness, and disintegration time. Dry granulation was the best method to improve the characteristics of soybean powder with poor compressibility, poor flowability, and hygroscopic. Flow properties of the granules became better for Formula II and III by adding the concentration of silicon dioxide. The formulas also showed the good uniformity of weight, size, MC, friability, and disintegration time. Reducing the lubricant until 0, 5% of the formula made differences in friability, hardness, and disintegration time better than another formula.Conclusion: The result of this research indicates that differences in silicon dioxide and magnesium stearate composition of the formula can affect the physical characteristics of soybean (G. max (L.) Merr.) tablets. 


Sign in / Sign up

Export Citation Format

Share Document