scholarly journals Functionality evaluation of co-processed excipients as diluents in tablets manufactured by wet granulation

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Y. Eshovo Apeji ◽  
IY. Muhammad ◽  
A. Kehinde Olowosulu ◽  
G. Owoicho Okpanachi ◽  
A. Rukayat Oyi

Abstract Diluents are essential components of a tablet formulation. The type of diluent used in a formulation influences the quality of tablets produced from that formulation. The aim of this study was to evaluate the tableting properties of co-processed excipients (C-PEs) incorporated as diluents in tablet formulation by wet granulation. Metronidazole tablets were prepared by wet granulation incorporating different diluents that were either single component excipients (SCEs) (lactose and microcrystalline cellulose) or C-PEs (Ludipress®, StarLac®, Prosolv® and AVICEL®HFE). The granules obtained for each formulation were evaluated for particle size analysis, flow properties and compression properties. Tablets weighing 500 mg were compressed from the metronidazole granules on a Single Station Tablet Press using a 12 mm punch and die tooling system. The tablets were kept for 24 h post-production, and the properties of weight uniformity, thickness, tensile strength, friability, disintegration time and dissolution profile evaluated subsequently. Results of granule properties showed that variations in parameters evaluated was as a result of differences in the type and composition of diluent used in formulation. Compactibility and tabletability profile of metronidazole granules revealed a better performance with granules processed with C-PE based diluents compared to SCE-based diluents. Tablets formulated with C-PEs as diluents were uniform in tablet weight, disintegrated faster and yielded a faster drug release compared to tablet formulations containing SCEs as diluent. This study reveals the performance advantage of C-PEs as diluents in tablets manufactured by wet granulation and highlights the importance of rational selection of excipients during tablet formulation.

Author(s):  
Ahmed H. Ali ◽  
Shaimaa N. Abd-Alhammid

       Atorvastatin have problem of very slightly aqueous solubility (0.1-1 mg/ml). Nano-suspension is used to enhance it’s of solubility and dissolution profile. The aim of this study is to formulate Atorvastatin as a nano-suspension to enhance its solubility due to increased surface area of exposed for dissolution medium, according to Noyes-Whitney equation.         Thirty one formulae were prepared to evaluate the effect of ; Type of polymer, polymer: drug ratio, speed of homogenization, temperature of preparation and inclusion of co-stabilizer in addition to the primary one; using solvent-anti-solvent precipitation method under high power of ultra-sonication. In this study five types of stabilizers (TPGS, PVP K30, HPMC E5, HPMC E15, and Tween80) were used in three different concentrations 1:1, 1:0.75 and 1:0.5 for preparing of formulations. At the same time, tween80 and sodium lauryl sulphate have been added as a co-stabilizer.          Atorvastatin nano-suspensions were evaluated for particle size, PDI, zeta potential, crystal form and surface morphology. Finally, results of particle size analysis revealed reduced nano-particulate size to 81nm for optimized formula F18 with the enhancement of in-vitro dissolution profile up to 90% compared to 44% percentage cumulative release for the reference Atorvastatin calcium powder in 6.8 phosphate buffer media. Furthermore, saturation solubility of freeze dried Nano suspension showed 3.3, 3.8, and 3.7 folds increments in distilled water, 0.1N Hcl and 6.8 phosphate buffers, respectively. Later, freeze dried powder formulated as hard gelatin capsules and evaluated according to the USP specifications of the drug content and the disintegration time.        As a conclusion; formulation of poorly water soluble Atorvastatin calcium as nano suspension significantly improved the dissolution of the drug and enhances its solubility.


Author(s):  
Shohreh Alipour ◽  
MAHSA ASEF ◽  
FATEMEH AHMADI

Objective: Fast disintegrating tablets (FDTs) are found helpful in dysphagia (difficulty in swallowing) especially in Parkinson patients. Levodopa is still the first choice in Parkinson disease treatment and is co-administered by carbidopa for better efficacy. Methods: In the present study, a rapid and simple isocratic Reverse Phase-High Performance Liquid Chromatography (RP-HPLC) method was developed and validated for simultaneous quantification of levodopa and carbidopa in optimized Fast Disintegrating Tablets (FDTs). The linearity, precision, accuracy, limit of detection (LOD) and limit of quantification (LOQ) of the method were determined. FDTs were prepared using direct compression, dry and wet granulation and were optimized for faster disintegration time. Tablets thickness, weight, hardness, friability, drug content and dissolution profile were also evaluated. Results: A RP-HPLC system with C18 column and mobile phase 90:10 (v/v) phosphate buffer: methanol was used. The method linearity was found to be within the concentration range of 3.125-50 μg/ml for levodopa, and 3.125-25 μg/ml for carbidopa. The intra and inter-day precision and accuracy were acceptable. LOD and LOQ of levodopa-carbidopa were 0.2-0.8 μg/ml and 0.5-2.4 μg/ml, respectively. The total chromatographic run time was 5 min. The optimized FDTs hardness was 3.81±0.4 and tablets were disintegrated within 30 sec. Levodopa and carbidopa were dissolved in dissolution media within 5 min. Conclusion: Results indicated that this method was suitable for simultaneous quantification of levodopa and carbidopa in the presence of different ingredients of a pharmaceutical solid dosage form. Therefore, this method could be applied in pharmaceutical quality control for rapid quantification of structurally similar substances with different physicochemical properties.


Author(s):  
J. A. Avbunudiogba ◽  
O. Oghenekevwe

Aims: The pharmaceutical world has been paying increasing attention to the extraction, development and use of natural gums as binders in the formulation of solid dosage forms. The use of natural gums as binders is more advantageous than the use of synthetic ones due to availability, low cost, biodegradability and biocompatibility. In this study, gum extracted from Grewia species was compared with that fromAcacia in metronidazole tablets. Study Design: Ten batches of metronidazole tablets were formulated with varied concentration of Grewiaspp gum and Acacia gum. Place and Duration of Study: The study was carried out in Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Delta State University, Abraka, Nigeria; between January and December 2019. Methodology: Five batches of metronidazole tablets containing 0.5, 0.75, 1.0, 1.25 and 1.5% w/w of Grewia gum were preparedby wet granulation. Resulting granules were characterised by measuring flow and packing properties. In other experiments, five batches of tablets were formulated using same concentration of gum, with Acacia gum substituted for Grewia gum. Both sets of granules were compressed into tablets using tableting machine at a load of 27 arbitrary units. Tablets so formed were evaluated for hardness, friability, disintegration time, drug content and drug release profiles. Drug – excipient interaction was investigated with FTIR. Results: The resulting metronidazole tablets showed hardness of 5.46 kgF to 7.87 kgF (Grewiagum) and 6.06 kgF-8.20 kgF (Acacia gum). Friability percentages of all the batches were above 1% except for A3-A5 and B5 which are less than 1%. All formulations released more than 75 % of the drug content within 60 min. The FTIR analysis revealed no interaction between the metronidazole and Grewia species gum. Conclusion: Metronidazole granules and tablets were successfully prepared using Grewiagum and showed comparable pre-compression and post-compression properties with those formulated with Acacia.


2021 ◽  
Vol 11 (2) ◽  
pp. 42-50
Author(s):  
Vandana Gupta ◽  
Ashish Manigauha

The purpose of present exploration was to modify kappa (k)-Carrageenan, by crosslinking, and assessed it as a tablet disintegrant to strengthen the solubility of the drug (aceclofenac) in tablet formulation. Modified k-Carrageenan was synthesized by reacting it with epichlorhydrin at heterogenous  conditions. The swelling action of the product was investigated in order to optimize reaction circumstances for chemical cross-linking. Best modified k-Carrageenan procured by optimizing the reaction conditions and it was characterized for swelling index, particle size distribution, solubility, viscosity, gel strength and Fourier transform infrared spectroscopy (FTIR). Influence of modified k-Carrageenan on dissolution profile of therapeutic was also investigated along with other evaluation parameters. Modified k-Carrageenan exhibiting significant swelling index which is comparable to that of superdisintegrants. On comparative investigation as a tablet disintegrant by preparing anhydrous dicalcium phosphate tablet, modified k-Carrageenan showed disintegration time less than 20 seconds. Dissolution of aceclofenac (Class II) tablet formulaion utilizing modified k-Carrageenan was comparable with commercially available superdisintegrants. Faster dissolution of the accommodated drug was achieved with modified k-Carrageenan which was comparable with dissolution of the tablet formulation containing other superdisintegrants. The competent concentration of k-Carrageenan was found to be 5-15% as tablet disintegrant. Modified k-Carrageenan might be encouraging tablet disintegrant in fast dissolving formulations and can be worn in direct compression method. Keywords: k-Carageenan. Epichlorhydrin. Aceclofenac. Crosslinking. Superdisintegrant


Author(s):  
Sinodukoo Eziuzo Okafo ◽  
Avbunudiogba John Afokoghene ◽  
Christian Areruruoghene Alalor ◽  
Deborah Ufuoma Igbinake

Aims: This research was done to study the effects of types and concentrations of lubricants on the dissolution and disintegration profile of metronidazole tablets formulated using Sida acuta gum as a binder. Methodology: Sida acuta gum (SAG) was extracted from powdered dried leaves of Sida acuta. Metronidazole granules were produced by wet granulation technique using different concentrations (1 and 2%) of SAG as a binder and mixed with different concentrations (0.5, 1.0, and 1.5%) of magnesium stearate (MS) or sodium lauryl sulphate (SLS) as a lubricant. The granules/lubricant -mix was compressed into tablets and evaluated for hardness, weight uniformity, drug content, disintegration time, friability and in vitro drug release. Results: The hardness for the tablets was from 4.08 to 7.97 Kgf. The friability was from 0.02±0.45 to 3.40±0.43%. Tablets from formulations A1-A3, B2, and B3 failed the friability test. Formulations prepared with 1% SAG were more friable than those formulated with 2% SAG. Disintegration time for formulations A1-A3 (1% SAG + MS) ranged from 19.07 to 63.5 min, while that of A4-A6 (2% SAG + MS) was from 39.06 to 81.48 min. Formulations B1-B3 (1% SAG + SLS) had disintegration time that ranged from 4.22 to 6.8 min while that of B4-B6 (2% SAG + SLS) was from 9.35 to 15.90 min. The % drug release at 60 min for formulations that contained SAG and MS was 76.60-104.28% and SAG and SLS was 99.89-101.35% Conclusion: Metronidazole tablets formulated using SLS as lubricant disintegrated faster than those formulated using magnesium stearate as lubricant. Percentage drug release from tablets containing SLS was slightly higher than those that contained magnesium stearate. Higher concentrations of the lubricants produced softer tablets.


2014 ◽  
Vol 50 (1) ◽  
pp. 195-202 ◽  
Author(s):  
Haroon Rahim ◽  
Mir Azam Khan ◽  
Amin Badshah ◽  
Kamran Ahmad Chishti ◽  
Salimullah Khan ◽  
...  

To evaluate binding potential of Prunus domestica gum in tablets formulations. Six tablet batches (F-1B to F-6B) were prepared by wet granulation method, containing Avicel pH 101 as diluent, sodium diclofenac as model drug using 10, 15 and 20 mg of Prunus domestica gum as binder and PVP K30 was used as standard binder. Magnesium stearate was used as lubricant. Flow properties of granules like bulk density, tapped density, Carr index, Hausner’s ratio, angle of repose as well as physical parameters of the compressed tablets including hardness, friability, thickness and disintegration time were determined and found to be satisfactory. The FTIR spectroscopic analysis showed that the formulation containing plant gum is compatible with the drug and other excipients used in tablets formulation. Hence the plant gum has role as a potential binder in tablets formulations. The dissolution profile showed that tablets formulations containing Prunus domestica gum 15 mg/200 mg of total weight of tablet as binder showed better results as compared to PVP K30.


2020 ◽  
Vol 21 (1) ◽  
pp. 35
Author(s):  
Dwi Setyawan ◽  
Widji Soeratri ◽  
Mahrus Naufal Nuruddin ◽  
Diajeng Putri Paramita ◽  
Bambang Widjaja

The aim of this study was to determine the effect of binder and disintegrant excipients toward tablet properties of levofloxacin as the latter tends to suffer brittle fracture upon compression. The excipients used were povidone K-30 as the binder and sodium starch glycolate (SSG) as the disintegrant which the tablets were formulated according to factorial design 22 with two factors and two levels on each factor. Four formulas were prepared by wet granulation method using 2 and 4% of each povidone K-30 and sodium starch glycolate in various compositions. Tablet properties were evaluated for its hardness, friability, and disintegration time as well as dissolution profile. The data obtained was statistically analyzed using Minitab® 17 software to optimize the formulation and resulted in different impacts caused by each excipient. Povidone K-30 exhibited an increment in hardness, friability, disintegration time but a decrease indissolution profile of levofloxacin tablet. SSG decreased hardnessand disintegration time, but increased friability and dissolution profile of levofloxacin tablet. Overlaid contour plot showed that the optimal formula regarding tablet properties of friability, disintegration time, and dissolution profile is in composition of 2.01% povidone K-30 and 2.01% sodium starch glycolate. Keywords: levofloxacin tablet, povidone K-30, sodium starch glycolate, factorial design.


Author(s):  
C Mallikarjuna Setty ◽  
Radhika Muthadi ◽  
V.R.M Gupta ◽  
M.V.R. Reddy ◽  
Jithan A.V.

 Aceclofenac, a non-steroidal anti-inflammatory drug, is used for posttraumatic pain and rheumatoid arthritis. The tablets were produced by simple wet granulation method. The post compressional parameters, hardness, friability, drug content of all the formulations were within the official limits. The disintegration time did not change with the type of diluents (mannitol, microcrystalline cellulose and dicalcium phosphate). However, it varied with the concentration of polyvinylpyrrolidone and microcrystalline cellulose. As the concentration of acacia was decreased, disintegration time decreased and hence, dissolution increased.  Incorporation of superdisintegrants improved the disintegration time as well as dissolution of the drug. As the granules size increased disintegration time decreased and increase in dissolution was noticed. It can be concluded that the selection of combination of variables and levels were important in the optimization of aceclofenac tablet formulation.


Author(s):  
Rakesh Kumar Mishra

Simvastatin is commonly used antihyperlipidemic in the treatment of hypercholesterolemia and dyslipidemia. As evidenced form the scientific investigation, it is reported for its lower solubility and poor dissolution rate. The aim of the present investigation was to develop simvastatin spherical agglomerates to improve its solubility and dissolution characteristics by spherical agglomeration method. The crystallization media used was methanol, water and chloroform as bridging liquid and PVP K-30 as a polymer. The process variables such as amount and type of (bridging liquid and polymer), stirring speed and stirring time were optimized and reported. The spherical agglomerates were further subjected for determination of % drug content, particle size analysis, solubility and dissolution rate. The agglomerates were also characterized by Differential Scanning Calorimetry (DSC), Fourier Transform Infrared Spectroscopy (FTIR), and X-ray Powder Diffraction (XRD) analysis and affirmed. Among the entire parameters spherical agglomerates obtained with methanol (7ml), water (50ml), chloroform (1.5ml) and PVP K-30 (0.5%) showed improvement in solubility and dissolution rate in comparison with pure drug. The spherical agglomerates showed significant improvement in dissolution from a value of 25.53% for pure simvastatin to 91.31% of spherical agglomerate. The spherical agglomerates of optimized batch were directly compressed and dissolution profile was compared with marketed tablet. Such a technique can successfully be employed to improve solubility and dissolution characteristic of poorly soluble drugs.


2019 ◽  
Vol 1 (3) ◽  
Author(s):  
Yoga Windhu Wardhana ◽  
Dradjad Priambodo

The dissolution of tablets is one of a drug absorption determinant. Disintegrant agent has play an important role on determining the dissolution of tablets. In this experiment, the dissolution behaviours of Acetaminophen and Ibuprofen Tablet was studied using various disintegrant agent such as Low substituted – Hydroxypropyl Cellulose (L–HPC) 21, L–HPC 22 and Sodium Starch Glycolate (SSG) as comparator. Those disintegrant agents were used at three concentration (6%, 7% and 8%) for every tablets formula. Tablets were made by wet granulation method and pressed using single punch 13 mm flat E. Korsch machine. Evaluation of each tablets quality were conducted include for uniformity of weight and size (diameter and thickness), hardness, friability, disintegration time and dissolution. Physically standards from tablets were in good condition, the standards of the weight and thickness uniformity, hardness and friability met the requirement. The dissolution profile on Acetaminophen Tablets showed that only tablet with 6 % L–HPC 21 did not meet the requirement of FI V (Q = 80%, 30 minutes), but on Ibuprofen Tablets where met the requirement of  FI V (Q = 80%, 60 minutes) only tablet with 8%  L– HPC 21,  7% and 8% SSG. The conclusion of the study was the L–HPC has more disintegrant character at hydrophilic active ingredients. Key words:  Acetaminophen Tablet, Ibuprofen Tablet, SSG, L-HPC 21 and 22, Dissolution Profile


Sign in / Sign up

Export Citation Format

Share Document