scholarly journals Surface downwelling shortwave radiation flux projections for 2021‒2050 in Morocco according to CORDEX-Africa regional climate models

2021 ◽  
Vol 54/55 (54/55) ◽  
pp. 35-42
Author(s):  
Youssef El Hadri ◽  
Valeriy Khokhlov ◽  
Mariia Slizhe ◽  
Kateryna Sernytska

The article considers the results of an estimation of the shortwave radiation flux at the surface in Morocco from 2021-2050. Average monthly values of shortwave radiation coming to the underlying surface (Surface Downwelling Shortwave Radiation, RSDS), calculated using 11 regional climate models of the CORDEX-Africa project, were used as input data. The model calculation was performed assuming a greenhouse gas concentration scenario of RCP4.5. The aim of the work is to determine the characteristics of the distribution of shortwave radiation over the territory of Morocco from 2021-2050 and to identify areas with favourable conditions for developing solar energy in the near future. The results of an analysis of annual RSDS values in the vicinity of the solar power station in Ouarzazate in 2021-2050 are also presented.

2016 ◽  
Vol 29 (2) ◽  
pp. 819-838 ◽  
Author(s):  
Omar Bellprat ◽  
Sven Kotlarski ◽  
Daniel Lüthi ◽  
Ramón De Elía ◽  
Anne Frigon ◽  
...  

Abstract An important source of model uncertainty in climate models arises from unconfined model parameters in physical parameterizations. These parameters are commonly estimated on the basis of manual adjustments (expert tuning), which carries the risk of overtuning the parameters for a specific climate region or time period. This issue is particularly germane in the case of regional climate models (RCMs), which are often developed and used in one or a few geographical regions only. This study addresses the role of objective parameter calibration in this context. Using a previously developed objective calibration methodology, an RCM is calibrated over two regions (Europe and North America) and is used to investigate the transferability of the results. A total of eight different model parameters are calibrated, using a metamodel to account for parameter interactions. The study demonstrates that the calibration is effective in reducing model biases in both domains. For Europe, this concerns in particular a pronounced reduction of the summer warm bias and the associated overestimation of interannual temperature variability that have persisted through previous expert tuning efforts and are common in many global and regional climate models. The key process responsible for this improvement is an increased hydraulic conductivity. Higher hydraulic conductivity increases the water availability at the land surface and leads to increased evaporative cooling, stronger low cloud formation, and associated reduced incoming shortwave radiation. The calibrated parameter values are found to be almost identical for both domains; that is, the parameter calibration is transferable between the two regions. This is a promising result and indicates that models may be more universal than previously considered.


Author(s):  
Marc Niyongendako ◽  
Agnidé Emmanuel Lawin ◽  
Célestin Manirakiza ◽  
Serge Dimitri Yikwé Buri Bazyomo ◽  
Batablinlè Lamboni

This work focuses on analysis of climate change effects on Photovoltaic (PV) power output in the Eastern and Northeastern of Burundi. Monthly temperature data from meteorological stations and solar irradiance data provided by SoDa database were considered as observed dataset for the historical period 1981-2010. Projection climate data from eight Regional Climate Models of CORDEX for Africa were used over the near future period 2021-2050. The change in temperature and solar irradiance were analyzed and the effects of these climate changes were assessed to show their impacts on PV power potential. The results indicated increasing trends and change in temperature for about 2°C over this near future period. The solar irradiance change was revealed negative with a high interannual variation for all regions and the mean decrease ranges between 2 and 4 W/m². The findings revealed also a negative change in PV power potential close to zero for all regions with a high change occurred in NLL. Indeed, the contribution of each parameter to PV power potential change was negative all over regions. However, the projected climate change does not predict a huge PV power potential change by 2050. Therefore, Burundi may invest in producing electricity energy from PV systems.


2020 ◽  
Author(s):  
Peter Greve ◽  
Peter Burek ◽  
Renate Wilcke ◽  
Lukas Brunner ◽  
Carol McSweeney ◽  
...  

<p><span>Global hydrological models (GHMs) have become an established tool to simulate water resources on continental scales. To assess the future of water availability and various impacts related to hydrological extreme events, these models usually use sets of atmospheric variables (such as e.g., precipitation, humidity, temperature) obtained from (regional) climate model simulations as input data. The uncertainty associated with the climate projections is transferred onwards into the impact simulations and is usually accounted for through the use of large model ensembles. These ensembles thus enable assessments addressing the robustness of projected hydrological changes and impacts. Given recent efforts within the European Climate Prediction (EUCP) project to test existing and develop new techniques to constrain/weight climate model ensembles, we use here different methods to specify the large-scale meteorological input to an ensemble of regional climate models that provide the input data for a state-of-the-art GHM. The climate models are weighted/constrained based on the key large-scale climatic and meteorological drivers shaping the hydrological characteristics in different regions and large river basins across Europe. To assess the potential benefits of the different techniques, we compare simulation ensembles using unweighted input data obtained from the full ensemble of regional climate models against an ensemble based on constrained/weighted forcing data. Given the large uncertainties usually associated with hydrological impact simulations forced by the full range of available climate models, processing the ensemble output of GHMs based on uncertainty assessments of the underlying climate forcing could lead to more robust projections of water resources in general and hydrological extreme events in particular. </span></p>


Author(s):  
Agnidé Emmanuel Lawin ◽  
Manirakiza Célestin ◽  
Lamboni Batablinlé

This paper assessed projected changes of wind power potential in near future climate scenarios over four sites from two contrasting regions of Burundi. Observed and MERRA-2 data sets were considered for the historical period 1981-2010, and a computed Multi-model ensemble for future projections data of eight Regional Climate Models under RCP 4.5 and 8.5 over the period 2011-2040 was used. Regional Climate Models were downscaled at local climate using Empirical Statistical Downscaling method. Mann-Kendall’s test was used for trend analysis over the historical period, while future changes in wind power density (WPD) quartiles were computed for each climate scenario by 2040. The findings revealed an increase in wind power potential all over the area studied with higher values during summer time. Indeed, over the period 2011-2040, the lowest WPD change is projected at Northern highlands (NHL) under RCP 4.5 with 27.03 W.m-2, while the highest WPD change of 46.34 W.m-2 is forecasted under RCP 8.5 at Southern Imbo plain (SIP). The month of August and September are expected to have higher WPD change in RCP 4.5 and RCP 8.5, respectively while January is projected to have the lowest WPD. Places near by the Lake Tanganyika are the most favorable areas for wind power generation.


2003 ◽  
Vol 34 (5) ◽  
pp. 399-412 ◽  
Author(s):  
M. Rummukainen ◽  
J. Räisänen ◽  
D. Bjørge ◽  
J.H. Christensen ◽  
O.B. Christensen ◽  
...  

According to global climate projections, a substantial global climate change will occur during the next decades, under the assumption of continuous anthropogenic climate forcing. Global models, although fundamental in simulating the response of the climate system to anthropogenic forcing are typically geographically too coarse to well represent many regional or local features. In the Nordic region, climate studies are conducted in each of the Nordic countries to prepare regional climate projections with more detail than in global ones. Results so far indicate larger temperature changes in the Nordic region than in the global mean, regional increases and decreases in net precipitation, longer growing season, shorter snow season etc. These in turn affect runoff, snowpack, groundwater, soil frost and moisture, and thus hydropower production potential, flooding risks etc. Regional climate models do not yet fully incorporate hydrology. Water resources studies are carried out off-line using hydrological models. This requires archived meteorological output from climate models. This paper discusses Nordic regional climate scenarios for use in regional water resources studies. Potential end-users of water resources scenarios are the hydropower industry, dam safety instances and planners of other lasting infrastructure exposed to precipitation, river flows and flooding.


2021 ◽  
Author(s):  
Kelly Mahoney ◽  
James D. Scott ◽  
Michael Alexander ◽  
Rachel McCrary ◽  
Mimi Hughes ◽  
...  

AbstractUnderstanding future precipitation changes is critical for water supply and flood risk applications in the western United States. The North American COordinated Regional Downscaling EXperiment (NA-CORDEX) matrix of global and regional climate models at multiple resolutions (~ 50-km and 25-km grid spacings) is used to evaluate mean monthly precipitation, extreme daily precipitation, and snow water equivalent (SWE) over the western United States, with a sub-regional focus on California. Results indicate significant model spread in mean monthly precipitation in several key water-sensitive areas in both historical and future projections, but suggest model agreement on increasing daily extreme precipitation magnitudes, decreasing seasonal snowpack, and a shortening of the wet season in California in particular. While the beginning and end of the California cool season are projected to dry according to most models, the core of the cool season (December, January, February) shows an overall wetter projected change pattern. Daily cool-season precipitation extremes generally increase for most models, particularly in California in the mid-winter months. Finally, a marked projected decrease in future seasonal SWE is found across all models, accompanied by earlier dates of maximum seasonal SWE, and thus a shortening of the period of snow cover as well. Results are discussed in the context of how the diverse model membership and variable resolutions offered by the NA-CORDEX ensemble can be best leveraged by stakeholders faced with future water planning challenges.


Author(s):  
Weijia Qian ◽  
Howard H. Chang

Health impact assessments of future environmental exposures are routinely conducted to quantify population burdens associated with the changing climate. It is well-recognized that simulations from climate models need to be bias-corrected against observations to estimate future exposures. Quantile mapping (QM) is a technique that has gained popularity in climate science because of its focus on bias-correcting the entire exposure distribution. Even though improved bias-correction at the extreme tails of exposure may be particularly important for estimating health burdens, the application of QM in health impact projection has been limited. In this paper we describe and apply five QM methods to estimate excess emergency department (ED) visits due to projected changes in warm-season minimum temperature in Atlanta, USA. We utilized temperature projections from an ensemble of regional climate models in the North American-Coordinated Regional Climate Downscaling Experiment (NA-CORDEX). Across QM methods, we estimated consistent increase in ED visits across climate model ensemble under RCP 8.5 during the period 2050 to 2099. We found that QM methods can significantly reduce between-model variation in health impact projections (50–70% decreases in between-model standard deviation). Particularly, the quantile delta mapping approach had the largest reduction and is recommended also because of its ability to preserve model-projected absolute temporal changes in quantiles.


2021 ◽  
Vol 11 (5) ◽  
pp. 2403
Author(s):  
Daniel Ziche ◽  
Winfried Riek ◽  
Alexander Russ ◽  
Rainer Hentschel ◽  
Jan Martin

To develop measures to reduce the vulnerability of forests to drought, it is necessary to estimate specific water balances in sites and to estimate their development with climate change scenarios. We quantified the water balance of seven forest monitoring sites in northeast Germany for the historical time period 1961–2019, and for climate change projections for the time period 2010–2100. We used the LWF-BROOK90 hydrological model forced with historical data, and bias-adjusted data from two models of the fifth phase of the Coupled Model Intercomparison Project (CMIP5) downscaled with regional climate models under the representative concentration pathways (RCPs) 2.6 and 8.5. Site-specific monitoring data were used to give a realistic model input and to calibrate and validate the model. The results revealed significant trends (evapotranspiration, dry days (actual/potential transpiration < 0.7)) toward drier conditions within the historical time period and demonstrate the extreme conditions of 2018 and 2019. Under RCP8.5, both models simulate an increase in evapotranspiration and dry days. The response of precipitation to climate change is ambiguous, with increasing precipitation with one model. Under RCP2.6, both models do not reveal an increase in drought in 2071–2100 compared to 1990–2019. The current temperature increase fits RCP8.5 simulations, suggesting that this scenario is more realistic than RCP2.6.


Sign in / Sign up

Export Citation Format

Share Document