scholarly journals Design and Implementation of Van de Graaff Generator

Author(s):  
Aditya Jaitu ◽  
Amish lohar ◽  
Sumit Patil ◽  
Vaishnavi Mokal ◽  
Prof. Nikhil Kasar

The paper proposes a design and implementation of Van de Graaff generator whose output voltage is 80.28 KV. To calculate the generated output voltage we have use the sphere gap method. A Van de Graaff generator is an electrostatic generator as it works on a principle of electrostatics. A Van de Graaff generator is used to generate a high DC voltage. It was first developed by Robert Jemison Van de Graaff in 1929, in USA and carries his name along 1931. This generator uses a moving belt to build up very high voltages on a hollow metal globe which is located on top of the generator. The potential difference that is developed in modern Van de Graaff generator reach about 5 megavolts. A Van de Graaff generator that we design and built that is intended to be used in schools and colleges for teaching the basics principles of Electrostatics and Electromagnetics as well as many other applications. Nowadays many schools and colleges laboratories and many museums use this type of generators for electrostatics demonstrations.

2013 ◽  
Vol 13 (4) ◽  
pp. 139-147 ◽  
Author(s):  
Junsheng Jiao

Abstract The output voltage of Solid Oxide Fuel Cell (SOFC) is usually changed with the temperature and hydrogen flow rate. Since the fuel cell can generate a wide range of voltages and currents at the terminals, as a consequence, a constant DC voltage and function cannot be maintained by itself as a DC voltage power supply source. To solve this problem, a simple SOFC electrochemical model is introduced to control the output voltage. The Sliding Mode Control (SMC) is used to control the output voltage of the DC-DC converter for maintaining the constant DC voltage when the temperature and hydrogen flow rate are changed. By the simulation results it can be seen that the SMC technique has improved the transient response and reduced the steady state error of DC voltage.


Author(s):  
Habibullah Salim ◽  
Irma Husnaini ◽  
Asnil Asnil

This research aims to make buck converter prototype for PLTS system by using fuzzy logic controller. Buck converter is required in the PLTS system if the required unidirectional voltage is smaller than the output voltage of the solar cell. Buck converter used to convert 24 Volt dc voltage to 12 Volt dc with 60 watt capability. While fuzzy logic controller is used to improve buck converter performance based on pulse generation technique for switching. The application of fuzzy logic method is expected to improve the performance of the system by maintaining the stability of buck converter output voltage of 12 volts and reduce the output ripple value. Atmega8535 microcontroller is used to generate PWM pulses for switching on power circuits. The results obtained from the test using a 100 Ohm 5 Watt load obtained the buck converter output voltage of 12.4 Volt.


Author(s):  
R. Palanisamy ◽  
A. Velu ◽  
K. Selvakumar ◽  
D. Karthikeyan ◽  
D. Selvabharathi ◽  
...  

This paper deals the implementation of 3-level output voltage using dual 2-level inverter with control of sub-region based Space Vector Modulation (SR-SVM). Switching loss and voltage stress are the most important issues in multilevel inverters, for keep away from these problems dual inverter system executed. Using this proposed system, the conventional 3-level inverter voltage vectors and switching vectors can be located. In neutral point clamped multilevel inverter, it carries more load current fluctuations due to the DC link capacitors and it requires large capacitors. Based on the sub-region SVM used to control IGBT switches placed in the dual inverter system. The proposed system improves the output voltage with reduced harmonic content with improved dc voltage utilisation. The simulation and hardware results are verified using matlab/simulink and dsPIC microcontroller.


2008 ◽  
Vol 128 (3) ◽  
pp. 244-250
Author(s):  
Kenji Amei ◽  
Kenji Teshima ◽  
Youhei Tanizaki ◽  
Takahisa Ohji ◽  
Masaaki Sakui

2018 ◽  
Vol 7 (3) ◽  
pp. 1059
Author(s):  
Mustafa Fawzi Mohammed ◽  
Ali Husain Ahmad ◽  
AbdulRahim Thiab Humod

The most concerns in the inverter's design are about, how to make the output voltage of the inverter sinusoidal at the desired fundamental frequency with low total harmonic distortion (THD). This paper presents a design and implementation of single-phase five-level inverter which is powered by single dc source and based on T-type multi-level inverters construction. The proposed inverter is built mainly by six IGBTs and two diodes. The used modulation technique is based on using two triangular carriers at 2000 Hz frequency and shifted by phase opposition disposition (POD) method. The carriers are made slightly unbalanced with their amplitudes. The over-modulation method is also introduced in the design to get the lowest possible THD effect without using filters. The inverter is simulated by MATLAB SIMULINK, implemented practically, and tested with the help of LabVIEW software.  


Author(s):  
G. Vijaykrishna ◽  
Y. Kusumalatha

This paper examines how a Reversing voltage multilevel inverter (RVMLI) strategy is enforced to develop multilevel inverter fulfilment. This approach has been used SPWM-PD technique to regulate the electrical inverter. It desires numerous less range of carrier signals to deliver gate pulses of switches. Increasing within the levels during this strategy aid in reduction of output voltage harmonics expeditiously and improves power quality at output of the electrical inverter. It wants a lowered quantity of total switches, which is in a position to decreases of switching losses in this process. The Three-phase reversing voltage multilevel inverter of 7- level and 9- level is accomplished for R-load and R-L load and Three Phase Induction Motor. A reversing voltage multilevel inverter of 7- level and 9- level simulation is intended and developed. Mat lab/Simulink outcome is awarded to validate the proposed scheme.


2010 ◽  
Vol 170 (3) ◽  
pp. 40-47
Author(s):  
Kenji Amei ◽  
Kenji Teshima ◽  
Youhei Tanizaki ◽  
Takahisa Ohji ◽  
Masaaki Sakui

Sign in / Sign up

Export Citation Format

Share Document