Design and Implementation of Three Phase Reversing Voltage Multilevel Inverter

Author(s):  
G. Vijaykrishna ◽  
Y. Kusumalatha

This paper examines how a Reversing voltage multilevel inverter (RVMLI) strategy is enforced to develop multilevel inverter fulfilment. This approach has been used SPWM-PD technique to regulate the electrical inverter. It desires numerous less range of carrier signals to deliver gate pulses of switches. Increasing within the levels during this strategy aid in reduction of output voltage harmonics expeditiously and improves power quality at output of the electrical inverter. It wants a lowered quantity of total switches, which is in a position to decreases of switching losses in this process. The Three-phase reversing voltage multilevel inverter of 7- level and 9- level is accomplished for R-load and R-L load and Three Phase Induction Motor. A reversing voltage multilevel inverter of 7- level and 9- level simulation is intended and developed. Mat lab/Simulink outcome is awarded to validate the proposed scheme.

2016 ◽  
Vol 24 (8) ◽  
pp. 1440-1454 ◽  
Author(s):  
R Geetha ◽  
M Ramaswamy

The paper develops a new topology for a three phase multilevel inverter with a view to reduce the number of switches in the path of the current. It encompasses a mechanism to reach the desired target voltage and in turn enable the three phase induction motor to operate at the specified speed. The formulation incorporates the theory of an appropriate pulse width modulation strategy to ensure the elimination of higher frequency components of the output voltage. The use of relatively smaller number of carriers in the process of generating the switching pulses serves to enhance the output voltage spectrum. The intriguing merits of the phase disposition over the other modulation schemes enable to arrive at a nearly sinusoidal voltage. The performance obtained from the prototype substantiate the MATLAB based simulation results and establish the ability of the series parallel switched multilevel inverter topology to offer an improved performance for the induction motor.


This paper presents a 5 level T-type multilevel inverter, to improve the performance of the hybrid system and then improved voltage is injected into the grid. Two three level inverter with common emitter and common collector configurations are combined to obtain a five level inverter. PV and wind energy is used as a source of energy to the five level T-type MLI. It has advantages such as low switching losses, lesser THD, less filter requirement and superior output quality when compared to 3-level T-type MLI. PWM technique is employed to generate output voltage. The Simulation is done using MATLAB Simulink.


2018 ◽  
Vol 26 (2) ◽  
pp. 302-310
Author(s):  
Ali Abdulrazzak Jasim

This paper proposes a simulation of Photovoltaic energy used to supply an induction motor with acomparison of two types of inverters.In general, the greater number of motorswhich"are used incommercial and industrial applicationsare"induction motors. To use PV source to run the induction motor, an interface circuits are used which are a dc-dc"converter and an inverter, the PV cell has nonlinear behavior,"adc-dc converter is used along with Maximum Power Point Tracker controllerto improve theefficiency by boosting the output voltage of the PV module and to match the load demand."The dc output voltage of PV modulethen"converted to AC, two types of inverter are presented, A conventional Voltage Source Inverter system and multilevel inverter system which employselective harmonic eliminationmethod fed three phase induction motor, these two types of inverters are simulated using Matlab/Simulink and their results are presented. The FFT spectrum is presented of the output currents to analyze the harmonics reduction, which shows that the"multilevel inverter is better than VSI system"according to harmonics reduction and increment in output voltage and power.


2019 ◽  
Vol 139 (11) ◽  
pp. 901-907
Author(s):  
Jumpei Sawada ◽  
Shin-ichi Motegi ◽  
Yoshitaka Nakamura ◽  
Masaki Yamada

2021 ◽  
Vol 17 (1) ◽  
pp. 1-13
Author(s):  
Adala Abdali ◽  
Ali Abdulabbas ◽  
Habeeb Nekad

The multilevel inverter is attracting the specialist in medium and high voltage applications, among its types, the cascade H bridge Multi-Level Inverter (MLI), commonly used for high power and high voltage applications. The main advantage of the conventional cascade (MLI) is generated a large number of output voltage levels but it demands a large number of components that produce complexity in the control circuit, and high cost. Along these lines, this paper presents a brief about the non-conventional cascade multilevel topologies that can produce a high number of output voltage levels with the least components. The non-conventional cascade (MLI) in this paper was built to reduce the number of switches, simplify the circuit configuration, uncomplicated control, and minimize the system cost. Besides, it reduces THD and increases efficiency. Two topologies of non-conventional cascade MLI three phase, the Nine level and Seventeen level are presented. The PWM technique is used to control the switches. The simulation results show a better performance for both topologies. THD, the power loss and the efficiency of the two topologies are calculated and drawn to the different values of the Modulation index (ma).


2008 ◽  
Vol 128 (3) ◽  
pp. 244-250
Author(s):  
Kenji Amei ◽  
Kenji Teshima ◽  
Youhei Tanizaki ◽  
Takahisa Ohji ◽  
Masaaki Sakui

2018 ◽  
Vol 58 ◽  
pp. 03016 ◽  
Author(s):  
I.V Naumov ◽  
N.V. Savina ◽  
M.V. Shevchenko

One of the main operation modes that characterizes power quality in distribution networks is asymmetry of three-phase voltage system. Operation of an induction motor (IM) with disturbed voltage symmetry in the supply network can not be considered as a rated one. The system of voltages applied to the stator winding of IM under these conditions contains positive- and negative-sequence components. This worsens the performance characteristics of IM essentially. In order to balance the 0.38 kV network operation and enhance the efficiency of the three-phase electric motor operation it is suggested to use a special balancing unit (BU) that minimizes the negative-sequence components of current and voltage. The operation modes of the obtained system “supply source – induction motor – balancing unit” are simulated within the MATLAB software package of applied programs, which allows one to assess the impact of low quality of power on the operating characteristics of the electric motor and the efficiency of the balancing unit to increase the “durability” of the motor under the asymmetrical power consumption.


2020 ◽  
Vol 39 (6) ◽  
pp. 8225-8235
Author(s):  
Bandla Pavan Babu ◽  
V Indragandhi

In an Electrical system, Power Quality (PQ) is becoming significant to all types of consumers. With the increase of power demand from end users, maintaining the quality of power within the limitations is a major problem. In this paper, harmonic analysis in a grid connected three phase induction motor is tested according to PQ international standards which are found in the International Electro technical Commission (IEC). These mentioned standards are maintained in the transmission line and fed to the induction motor through a regenerative grid simulator. With the results obtained, execution of this fuzzy control system can be investigated through the digital simulation, which is based on MATLAB-SIMULINK package. It provides human operands to constitute a knowledge base which is used for diagnosing power quality and capable of predicting abnormal operation in Industries.


Sign in / Sign up

Export Citation Format

Share Document