Anti-inflammatory properties of the carotenoids and polyphenols of pumpkin (Cucurbita moschata Duchesne)

2018 ◽  
Vol 7 (3) ◽  
pp. 100-106
Author(s):  
Bouamar Sarah ◽  
Mokhtar Meriem ◽  
Bouziane Nabil ◽  
Boukazzoula Kamel ◽  
Riazi Ali

The purpose of this study was to investigate the anti-inflammatory activities of carotenoids and polyphenols extracts of pumpkin (Cucurbita moschata Duchesne). The evaluation was conducted using in vitro (BSA: bovine serum albumin and HRBC: Human Red Blood Cell membrane stabilization) and in vivo (Carrageenan-Induced Inflammation) tests. Pumpkin extracts obtained with organic solvents exhibited a good denaturation inhibition with 66 and 53% in the presence of 1000 μg/mL of carotenoids and polyphenols, respectively. In the HRBC membrane stabilization test, carotenoids had a better protection effect than polyphenols (66.17% vs 53.88%). In the in vivo test, polyphenol and carotenoid extracts were able to suppress the carrageenan-induced increases in paw thickness; carotenoids exerted a higher inhibition than the standard diclofenac. Both natural compounds decreased also C-Reactive Protein (CRP) production and lymphocytes, granulocytes and mid-sized cells. The histopathological study showed an accumulation of infiltrated inflammatory cells after the injection of carrageenan, but this inflammatory response was reduced in the pumpkin-treated animals. Pumpkin carotenoids and polyphenols reduced the neutrophils in the inflamed tissues. These findings suggest that polyphenols and carotenoids of pumpkins repre-sent good candidates as anti-inflammatory drugs.

2019 ◽  
Author(s):  
Federica De Leo ◽  
Giacomo Quilici ◽  
Mario Tirone ◽  
Valeria Mannella ◽  
Francesco De Marchis ◽  
...  

AbstractExtracellular HMGB1 triggers inflammation following infection or injury, and supports tumorigenesis in inflammation-related malignancies. HMGB1 has several redox states: reduced HMGB1 recruits inflammatory cells to injured tissues forming a heterocomplex with CXCL12 and signaling via its receptor CXCR4; disulfide-containing HMGB1 binds to TLR4 and promotes inflammatory responses. Here we show that Diflunisal, an aspirin-like nonsteroidal anti-inflammatory drug (NSAID) that has been in clinical use for decades, specifically inhibits in vitro and in vivo the chemotactic activity of HMGB1 at nanomolar concentrations, at least in part by binding directly to both HMGB1 and CXCL12 and disrupting their heterocomplex. Importantly, Diflunisal does not inhibit TLR4-dependent responses. Our findings clarify the mode of action of Diflunisal, and open the way to the rational design of functionally specific anti-inflammatory drugs.


Author(s):  
Juan Ramón Zapata-Morales ◽  
Angel Josabad Alonso-Castro ◽  
Gloria Sarahí Muñoz-Martínez ◽  
María Mayela Martínez-Rodríguez ◽  
Mónica Esther Nambo-Arcos ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Rodrigo Cuiabano Paes Leme ◽  
Raquel Bandeira da Silva

It has been demonstrated that some non-steroidal anti-inflammatory drugs (NSAIDs), like acetylsalicylic acid, diclofenac, and ibuprofen, have anti-biofilm activity in concentrations found in human pharmacokinetic studies, which could fuel an interest in repurposing these well tolerated drugs as adjunctive therapies for biofilm-related infections. Here we sought to review the currently available data on the anti-biofilm activity of NSAIDs and its relevance in a clinical context. We performed a systematic literature review to identify the most commonly tested NSAIDs drugs in the last 5 years, the bacterial species that have demonstrated to be responsive to their actions, and the emergence of resistance to these molecules. We found that most studies investigating NSAIDs’ activity against biofilms were in vitro, and frequently tested non-clinical bacterial isolates, which may not adequately represent the bacterial populations that cause clinically-relevant biofilm-related infections. Furthermore, studies concerning NSAIDs and antibiotic resistance are scarce, with divergent outcomes. Although the potential to use NSAIDs to control biofilm-related infections seems to be an exciting avenue, there is a paucity of studies that tested these drugs using appropriate in vivo models of biofilm infections or in controlled human clinical trials to support their repurposing as anti-biofilm agents.


Author(s):  
Inayat Kabir ◽  
Imtiyaz Ansari

The article emphasizes the anti-inflammatory effects of herbal extracts on different experimental models that are repeatedly used to test the in vivo anti-inflammatory activity of herbal components. Edema, granuloma and arthritis models are used to test the anti-inflammatory activity of plant extracts whereas formalin or acetic acid-induced writhing test and hot plate methods are the most repeatedly used to evaluate anti-nociceptive potentials of the herbal extracts. Although adjuvant-induced and collagen-induced arthritis models are also quite efficient, they have been used seldom to evaluate anti-inflammatory tendencies of the herbs. Here, we suggest a double positive reference model using both steroid and nonsteroidal anti-inflammatory drugs at the same time, instead of using only one of them either.


2020 ◽  
Vol 884 ◽  
pp. 173339
Author(s):  
Keisuke Okamoto ◽  
Yoshitaka Saito ◽  
Katsuya Narumi ◽  
Ayako Furugen ◽  
Ken Iseki ◽  
...  

2020 ◽  
Vol 12 (15) ◽  
pp. 1369-1386
Author(s):  
Siva S Panda ◽  
Adel S Girgis ◽  
Hitesh H Honkanadavar ◽  
Riham F George ◽  
Aladdin M Srour

Background: A new set of hybrid conjugates derived from 2-(4-isobutylphenyl)propanoic acid (ibuprofen) is synthesized to overcome the drawbacks of the current non-steroidal anti-inflammatory drugs. Results & methodology: Synthesized conjugates were screened for their anti-inflammatory, analgesic and ulcerogenic properties. Few conjugates were found to have significant anti-inflammatory properties in the carrageenan-induced rat paw edema test, while a fair number of conjugates showed promising peripheral analgesic activity in the acetic acid-induced writhing test as well as central analgesic properties in the in vivo hot plate technique. The newly synthesized conjugates did not display any ulcerogenic liability. Conclusion: In vitro, COX-1 and COX-2 enzyme inhibition studies raveled compound 7e is more selective toward COX-2 compared with ibuprofen.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Zheling Feng ◽  
Jun Cao ◽  
Qingwen Zhang ◽  
Ligen Lin

AbstractInflammation is an active defense response of the body against external stimuli. Long term low-grade inflammation has been considered as a deteriorated factor for aging, cancer, neurodegeneration and metabolic disorders. The clinically used glucocorticoids and non-steroidal anti-inflammatory drugs are not suitable for chronic inflammation. Therefore, it’s urgent to discover and develop new effective and safe drugs to attenuate inflammation. Clerodane diterpenoids, a class of bicyclic diterpenoids, are widely distributed in plants of the Labiatae, Euphorbiaceae and Verbenaceae families, as well as fungi, bacteria, and marine sponges. Dozens of anti-inflammatory clerodane diterpenoids have been identified on different assays, both in vitro and in vivo. In the current review, the up-to-date research progresses of anti-inflammatory clerodane diterpenoids were summarized, and their druglikeness was analyzed, which provided the possibility for further development of anti-inflammatory drugs.


2015 ◽  
Vol 31 (12) ◽  
pp. 1710-1719 ◽  
Author(s):  
Hirofumi Yokota ◽  
Sayaka Eguchi ◽  
Saki Hasegawa ◽  
Kana Okada ◽  
Fumiko Yamamoto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document