scholarly journals Pendidikan Ilmu Astronomi Dari Historis Sampai Heliosentris

2018 ◽  
Vol 2 (2) ◽  
pp. 93-110
Author(s):  
Nabil Nabil

Science in human life is very important to illuminate every walk of life, both physical (material) and metaphysical (immaterial). The universe was born millions and even billions of years ago, so many astronomical physicists calculate the origin of the universe, so the creation of the theory of bigbang, black holes, dark energy, dark matter, newton gravity, etc. Astronomy is important in teaching to know the phenomena of the universe (general), and to know times of worship (specifically). Before entering the science, it is better to know the history of astronomy, both the history of theory, and the figures then the hierarchy between geocentric and heliocentric in several views, both from the view of a character, as well as the view of the scriptures. Indeed, when humans think about the universe, in this case about the center of the universe there will be a hierarchy with the scriptures. This is a matter between different reason and revelation. Therefore, in this paper I touch on the issue of Heliocentric and Geocentric. And do not forget the astronomical figures from the West and East.

2008 ◽  
Vol 4 (S255) ◽  
pp. 56-60 ◽  
Author(s):  
Katherine Freese ◽  
Douglas Spolyar ◽  
Anthony Aguirre ◽  
Peter Bodenheimer ◽  
Paolo Gondolo ◽  
...  

AbstractThe first phase of stellar evolution in the history of the universe may be Dark Stars, powered by dark matter heating rather than by fusion. Weakly interacting massive particles, which are their own antiparticles, can annihilate and provide an important heat source for the first stars in the the universe. This talk presents the story of these Dark Stars. We make predictions that the first stars are very massive (~800M⊙), cool (6000 K), bright (~106L⊙), long-lived (~106years), and probable precursors to (otherwise unexplained) supermassive black holes. Later, once the initial DM fuel runs out and fusion sets in, DM annihilation can predominate again if the scattering cross section is strong enough, so that a Dark Star is born again.


2018 ◽  
Vol 09 (05) ◽  
pp. 832-850
Author(s):  
T. R. Mongan

2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Niels C. M. Martens

AbstractAccording to the standard model of cosmology, $$\Lambda $$ Λ CDM, the mass-energy budget of the current stage of the universe is not dominated by the luminous matter that we are familiar with, but instead by some form of dark matter (and dark energy). It is thus tempting to adopt scientific realism about dark matter. However, there are barely any constraints on the myriad of possible properties of this entity—it is not even certain that it is a form of matter. In light of this underdetermination I advocate caution: we should not (yet) be dark matter realists. The “not(-yet)-realism” that I have in mind is different from Hacking’s (Philos Sci 56 (4), 555–581, 1989) anti-realism, in that it is semantic rather than epistemological. It also differs from the semantic anti-realism of logical empiricism, in that it is naturalistic, such that it may only be temporary and does not automatically apply to all other unobservables (or even just to all other astronomical unobservables, as with Hacking’s anti-realism). The argument is illustrated with the analogy of the much longer history of the concept of a gene, as the current state of the concept of dark matter resembles in some relevant ways that of the early concept of genes.


Author(s):  
Vlatko Vedral

Every civilization in the history of humanity has had its myth of creation. Humans have a deeply rooted and seemingly insatiable desire to understand not only their own origins but also the origins of other things around them. Most if not all of the myths since the dawn of man involve some kind of higher or supernatural beings which are intimately related to the existence and functioning of all things in the Universe. Modern man still holds a multitude of different views of the ultimate origin of the Universe, though a couple of the most well represented religions, Christianity and Islam, maintain that there was a single creator responsible for all that we see around us. It is a predominant belief in Catholicism, accounting for about one-sixth of humanity, that the Creator achieved full creation of the Universe out of nothing – a belief that goes under the name of creation ex nihilo. (To be fair, not all Catholics believe this, but they ought to if they follow the Pope.) Postulating a supernatural being does not really help explain reality since then we only displace the question of the origins of reality to explaining the existence of the supernatural being. To this no religion offers any real answers. If you think that scientists might have a vastly more insightful understanding of the origin of the Universe compared to that of major religions, then you’d better think again. Admittedly, most scientists are probably atheists (interestingly, more than 95% in the United Kingdom) but this does not necessarily mean that they do not hold some kind of a belief about what the Creation was like and where all this stuff around us comes from. The point is that, under all the postulates and axioms, if you dig far enough, you’ll find that they are as stumped as anyone else. So, from the point of view of explaining why there is a reality and where it ultimately comes from, being religious or not makes absolutely no difference – we all end up with the same tricky question. Every time I read a book on the religious or philosophical outlook of the world I cannot help but recognize many ideas in there as related to some ideas that we have in science.


2021 ◽  
pp. 53-65
Author(s):  
Gianfranco Bertone

In the second part of the book, I argue that the four biggest mysteries of modern physics and astronomy—dark matter, dark energy, black holes, and the Big Bang—sink their roots into the physics of the infinitely small. And I argue that gravitational waves may shed new light on, and possibly solve, each of these four mysteries. I start here by introducing the problem of dark matter, the mysterious substance that permeates the Universe at all scales and describe the gravitational waves observations that might soon elucidate its nature. The next time you see the Sun shining in the sky, consider this: what blinds your eyes and warms your skin is an immense nuclear furnace, which transforms millions of tons of nuclear fuel into energy every second. And when you contemplate the night sky, try to visualize it for what it essentially is: an endless expanse of colossal natural reactors, forging the atoms that we, and everything that surrounds us, are made of.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Lorenzo Calibbi ◽  
Francesco D’Eramo ◽  
Sam Junius ◽  
Laura Lopez-Honorez ◽  
Alberto Mariotti

Abstract Displaced vertices at colliders, arising from the production and decay of long-lived particles, probe dark matter candidates produced via freeze-in. If one assumes a standard cosmological history, these decays happen inside the detector only if the dark matter is very light because of the relic density constraint. Here, we argue how displaced events could very well point to freeze-in within a non-standard early universe history. Focusing on the cosmology of inflationary reheating, we explore the interplay between the reheating temperature and collider signatures for minimal freeze-in scenarios. Observing displaced events at the LHC would allow to set an upper bound on the reheating temperature and, in general, to gather indirect information on the early history of the universe.


Physics Today ◽  
1957 ◽  
Vol 10 (10) ◽  
pp. 38-40
Author(s):  
Gérard de Vaucouleurs ◽  
C. C. Kiess

2013 ◽  
Vol 22 (14) ◽  
pp. 1350082 ◽  
Author(s):  
SHUO CAO ◽  
NAN LIANG

In order to test if there is energy transfer between dark energy (DE) and dark matter (DM), we investigate cosmological constraints on two forms of nontrivial interaction between the DM sector and the sector responsible for the acceleration of the universe, in light of the newly revised observations including OHD, CMB, BAO and SNe Ia. More precisely, we find the same tendencies for both phenomenological forms of the interaction term Q = 3γHρ, i.e. the parameter γ to be a small number, |γ| ≈ 10-2. However, concerning the sign of the interaction parameter, we observe that γ > 0 when the interaction between dark sectors is proportional to the energy density of dust matter, whereas the negative coupling (γ < 0) is preferred by observations when the interaction term is proportional to DE density. We further discuss two possible explanations to this incompatibility and apply a quantitative criteria to judge the severity of the coincidence problem. Results suggest that the γm IDE model with a positive coupling may alleviate the coincidence problem, since its coincidence index C is smaller than that for the γd IDE model, the interacting quintessence and phantom models by four orders of magnitude.


Sign in / Sign up

Export Citation Format

Share Document