scholarly journals ANALYSING TECHNOLOGIES FOR THE COMPREHENSIVE DIGITALISATION OF HIGHTECH INDUSTRIAL PRODUCTION IN AN «INDUSTRY 4.0» PARADIGM

Author(s):  
ANTON M. ANDRIANOV ◽  

The author’s research focuses on the analysis of modern technologies of digitalization of high-tech production, actively developing within the paradigm of “Industry 4.0”, which is the basis for the ongoing Fourth Industrial Revolution. The study examines the concept, essence and application potential of such technologies as cyber-physical systems, Industrial Internet of Things, product lifecycle management systems, collaborative robots, Big Data analytics, artificial intelligence and 3D-printing. The profound interconnection and interplay of these technologies within real high-tech manufacturing reflects the systemic nature of the digital transformation of industrial structures, suggesting the importance of their harmonious and integrated application in line with the current level of enterprise automation.

2021 ◽  
Vol 11 (13) ◽  
pp. 5975
Author(s):  
Ana María Camacho ◽  
Eva María Rubio

The Special Issue of the Manufacturing Engineering Society 2020 (SIMES-2020) has been launched as a joint issue of the journals “Materials” and “Applied Sciences”. The 14 contributions published in this Special Issue of Applied Sciences present cutting-edge advances in the field of Manufacturing Engineering focusing on advances and innovations in manufacturing processes; additive manufacturing and 3D printing; manufacturing of new materials; Product Lifecycle Management (PLM) technologies; robotics, mechatronics and manufacturing automation; Industry 4.0; design, modeling and simulation in manufacturing engineering; manufacturing engineering and society; and production planning. Among them, the topic “Manufacturing engineering and society” collected the highest number of contributions (representing 22%), followed by the topics “Product Lifecycle Management (PLM) technologies”, “Industry 4.0”, and “Design, modeling and simulation in manufacturing engineering” (each at 14%). The rest of the topics represent the remaining 35% of the contributions.


2021 ◽  
pp. 204388692098158
Author(s):  
Dipankar Chakrabarti ◽  
Rohit Kumar ◽  
Soumya Sarkar ◽  
Arindam Mukherjee

Industrial Internet of Things emerged as one of the major technologies enabling Industry 4.0 for industries. Multiple start-ups started working in the Industrial Internet of Things field to support this new industrial revolution. Distronix, one such Industrial Internet of Things start-up of India, started operations in 2014, when companies were not even aware of Industrial Internet of Things. Distronix started executing fixed-fee projects for implementation of Industrial Internet of Things. They also started manufacturing sensors to support large customers end-to-end in their Industry 4.0 journey. With the advent of public cloud, companies started demanding pay-per-use model for the solution Distronix provided. This posed a major challenge to Distronix as they had developed technology skills focusing fixed-fee customized project delivery for their clients. The situation demanded that they change their business model from individual project delivery to creation of product sand-box with pre-registered sensors and pre-defined visualization layer to support use cases for Industrial Internet of Things implementation in multiple industry sectors. It forced Rohit Sarkar, the 26 years old entrepreneur and owner of Distronix, to upgrade capabilities of his employees and transform the business model to support pay-per-use economy popularized by public cloud providers. The case discusses the challenges Rohit faced to revamp their business model in such an emerging technology field, like, to develop new skills of the technical people to support such novel initiative, reorienting sales people towards pay as use model, developing new concept of plug and play modular product, devising innovative pricing, better alliance strategy and finding out a super early adopter.


Information ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 120
Author(s):  
Majid Ziaei Nafchi ◽  
Hana Mohelská

The emergence of the fourth industrial revolution (Industry 4.0, hereinafter I 4.0) has led to an entirely fresh approach to production, helping to enhance the key industrial processes and therefore increase the growth of labor productivity and competitiveness. Simultaneously, I 4.0 compels changes in the organization of work and influences the lives of employees. The paper intends to construct a model for predicting the allocation of human resources in the sectors of the national economy of the Czech Republic in connection with I 4.0. The model used in this research visualizes the shift of labor in the economic sectors of the Czech Republic from the year 2013 to the following years in the near future. The main contribution of this article is to show the growth of employment in the high-tech services sector, which will have an ascending trend.


2021 ◽  
Vol 3 ◽  
Author(s):  
Antoine Vallatos ◽  
James M. Maguire ◽  
Nikolas Pilavakis ◽  
Gabrielis Cerniauskas ◽  
Alexander Sturtivant ◽  
...  

During the COVID-19 pandemic, global health services have faced unprecedented demands. Many key workers in health and social care have experienced crippling shortages of personal protective equipment, and clinical engineers in hospitals have been severely stretched due to insufficient supplies of medical devices and equipment. Many engineers who normally work in other sectors have been redeployed to address the crisis, and they have rapidly improvised solutions to some of the challenges that emerged, using a combination of low-tech and cutting-edge methods. Much publicity has been given to efforts to design new ventilator systems and the production of 3D-printed face shields, but many other devices and systems have been developed or explored. This paper presents a description of efforts to reverse engineer or redesign critical parts, specifically a manifold for an anaesthesia station, a leak port, plasticware for COVID-19 testing, and a syringe pump lock box. The insights obtained from these projects were used to develop a product lifecycle management system based on Aras Innovator, which could with further work be deployed to facilitate future rapid response manufacturing of bespoke hardware for healthcare. The lessons learned could inform plans to exploit distributed manufacturing to secure back-up supply chains for future emergency situations. If applied generally, the concept of distributed manufacturing could give rise to “21st century cottage industries” or “nanofactories,” where high-tech goods are produced locally in small batches.


2021 ◽  
Vol 2 ◽  
Author(s):  
Tomohiko Sakao ◽  
Alex Kim Nordholm

Product-as-a-service (PaaS) offerings have advantages and potential for transforming societies to a circular economy and for improving environmental performance. Original equipment manufacturers providing PaaS offerings take higher responsibility for product performances in the use phase than those selling products. This responsibility can be supported by digital technologies such as the Internet of Things (IoT) and big data analytics (BDA). However, insights on how data of product designs and in-use services are managed for PaaS offerings in product lifecycle management (PLM) software are scarce. This mini-review first gives an account of extant major research works that successfully applied BDA, a specific technique of artificial intelligence (AI), to cases in industry through a systematic literature review. Then, these works are analyzed to capture requirements for a PLM system that will exploit the IoT and BDA for PaaS offerings. The captured requirements are summarized as (1) facilitate product and service integration, (2) address multiple lifecycles, (3) adopt an ontology approach encompassing several product standards, and (4) include reading data to process in an interoperation layer.


Author(s):  
Kseniya Reznikova ◽  
Valery Maximov ◽  
Dmitry Popov

Together with the fourth industrial revolution Industry 4.0 in the field of shipbuilding came the concept of Shipbuilding 4.0. Despite its separation from Industry 4.0, the concept also implies the automation of production and implementation of the most advanced technologies. Such technologies include cloud computing, Internet of Things, artificial intelligence, augmented reality and blockchain. Today, all these technologies are heard and familiar to a huge number of people. They continue to be actively developed and implemented in various industries and areas of human life. Heavy industry, namely shipbuilding, was no exception. This article examines the concept of Shipbuilding 4.0 and information technology, it characterizes. Examples of the implementation of the above technologies in the shipbuilding industry are given: at shipyards, in design. Applications in logistics and shipping have also been studied. This work considers such a problem of the Russian shipbuilding industry as poorly developed digitalization. With a high probability, these technologies will soon be actively consolidated in this area and will start everywhere, including at Russian shipyards. The use of innovative developments will improve competitiveness and strengthen positions in the state and market economy. Maritime activity is a very responsible field, where the slightest mistake can lead to bad consequences on a colossal scale. Therefore, the advanced technologies considered in the work have yet to be brought to perfection. However, they already have the potential and direction of development.


Author(s):  
V.V. Yakhrichev

Along with digital modeling, the key modern technologies include virtual (VR) and augmented (AR) reality, the use of which is a prerequisite for the implementation of the fourth industrial revolution, also known as Industry 4.0. However, at Russian enterprises, these tools have not become widespread yet. The paper analyzes the possibility of using the tools of virtual and augmented reality and introduces the available Russian instruments. Practical examples consider the application in this area of — one of them — the VRConcept system — in detail. The availability of support in the VRConcept system for the data presentation format of the domestic computer-aided design system Compass-3D simplifies its implementation and use at the enterprise.


2018 ◽  
Vol 44 ◽  
pp. 00010
Author(s):  
Julia Asaturova ◽  
Anna Mikhailova

At present, the world economy is at the stage of formation of the fourth industrial revolution, which is called to raise the industry to a new qualitative level. In this article we contemplated the history and prerequisites of the industrial revolution, defined its basic features and the most progressive technologies. We analyzed the particular features of development of the industrial revolution in Russia and abroad. We inspected the experience of foreign countries in implementing state programs in the sphere “Industry 4.0”. We investigated the concept of the Industrial Internet as a basis for developing of a new wave of the industrial revolution. We studied its main advantages, its influence on the world economy and the anticipated consequences. We investigated the factors hindering the implementation of the project related to the Industrial Internet in Russia. We formulated the primary tasks and evaluated the perspectives for development of the industrial Internet in the Russian economy.


Sign in / Sign up

Export Citation Format

Share Document