scholarly journals Effect of organic matter addition on the solubility of arsenic in soil and uptake by rice: a field-scale study

2021 ◽  
Vol 64 (4) ◽  
pp. 439-446
Author(s):  
Ji-Hyock Yoo ◽  
Dan-Bi Kim ◽  
Won-Il Kim ◽  
Sung-Chul Kim
1964 ◽  
Vol 44 (1) ◽  
pp. 7-13 ◽  
Author(s):  
M. Schnitzer ◽  
R. C. Turner ◽  
I. Hoffman

Differential thermogravimetric (DTG) curves of untreated peat, muck, and 10 different Podzol L–H materials showed peaks at approximately 100 °C (moisture), 280° (low-temperature band), and 370 to 390 °C (high-temperature band). The maxima at 280 °C were sharp and characteristic of all surface materials investigated. The DTG curves were essentially the same for all of the Podzol L–H materials investigated.The DTG curves for 12 organic matter preparations extracted from Podzol Bh, Bfh, Bhf, Bfl, and Btf horizons showed maxima at 100 °C and in the 420 to 520 °C region (high-temperature band). The peaks at 280 °C were virtually absent in these materials. This suggested differences in composition between L–H and B horizon organic matter of the Podzols studied. The variations in the positions of the high-temperature bands of the B materials were related to the morphological characteristics of these soils in the field. From this it appeared that thermogravimetry might be a useful aid in soil classification.Addition of inorganic materials did not affect the position of the low-temperature bands but had a pronounced effect on the high-temperature bands of both L–H and B organic matter. Addition of Na caused the peaks of the latter to shift to higher temperatures while addition of Al and Fe caused shifts to lower temperatures.


1929 ◽  
Vol 19 (4) ◽  
pp. 627-648 ◽  
Author(s):  
V. Subrahmanyan

(1) In absence of decomposing organic matter addition of nitrate led to no loss of nitrogen.(2) On addition of small quantities of fermentable matter such as glucose there was (a) rapid depletion of nitrates and oxygen, but no denitrification, and (b) increase in acidity, carbon dioxide and bacteria. The greater part of the soluble nitrogen was assimilated by microorganisms or otherwise converted and the greater part of the added carbohydrate was transformed into lactic, acetic and butyric acids.(3) The organic acids were formed from a variety of carbohydrates. Lactic acid was the first to be observed and appeared to be formed mainly by direct splitting of the sugar. It decomposed readily, forming acetic and butyric acids. Some acetic acid was formed by direct oxidation of lactic acid, with pyruvic acid as the intermediate product. All the acids were, on standing, converted into other forms by micro-organisms.


2018 ◽  
Vol 2 (2) ◽  
Author(s):  
Zygmunt Mariusz Gusiatin

Soil washing is a remediation technology that can efficiently remove heavy metals from soil and decrease environmental risk. Due to the negative effect of conventional washing agents on soil quality, their replacement with novel, eco-friendly agents is necessary. This paper gives a basic presentation of the most promising washing agents that have high potential to be used at field scale: biodegradable chelators, biosurfactants, plant extracts, and dissolved organic matter including soluble low-weight organic matter and soluble humic substances. The main advantages of these novel agents are highlighted


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4575 ◽  
Author(s):  
Emily B. Graham ◽  
Rachel S. Gabor ◽  
Shon Schooler ◽  
Diane M. McKnight ◽  
Diana R. Nemergut ◽  
...  

Recent advances have allowed for greater investigation into microbial regulation of mercury toxicity in the environment. In wetlands in particular, dissolved organic matter (DOM) may influence methylmercury (MeHg) production both through chemical interactions and through substrate effects on microbiomes. We conducted microcosm experiments in two disparate wetland environments (oligotrophic unvegetated and high-C vegetated sediments) to examine the impacts of plant leachate and inorganic mercury loadings (20 mg/L HgCl2) on microbiomes and MeHg production in the St. Louis River Estuary. Our research reveals the greater relative capacity for mercury methylation in vegetated over unvegetated sediments. Further, our work shows how mercury cycling in oligotrophic unvegetated sediments may be susceptible to DOM inputs in the St. Louis River Estuary: unvegetated microcosms receiving leachate produced substantially more MeHg than unamended microcosms. We also demonstrate (1) changes in microbiome structure towardsClostridia, (2) metagenomic shifts toward fermentation, and (3) degradation of complex DOM; all of which coincide with elevated net MeHg production in unvegetated microcosms receiving leachate. Together, our work shows the influence of wetland vegetation in controlling MeHg production in the Great Lakes region and provides evidence that this may be due to both enhanced microbial activity as well as differences in microbiome composition.


Sign in / Sign up

Export Citation Format

Share Document