scholarly journals Properties of Fly Ash Based Coconut Fiber Composite

2012 ◽  
Vol 5 (1) ◽  
pp. 29-34 ◽  
Author(s):  
Ian
Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1039 ◽  
Author(s):  
Luciano Pisanu ◽  
Leonardo Costa Santiago ◽  
Josiane Dantas Viana Barbosa ◽  
Valter Estevão Beal ◽  
Marcio Luis Ferreira Nascimento

The growing demand in the consumer market for products with sustainable technologies has motivated new applications using overmolded natural fiber composites. Therefore, studies have been conducted mainly to understand the adhesive properties of overmolded parts. In the present study, a polypropylene (PP) composite with 30% coconut fibers without additives was developed with the aid of a corotating twin screw extruder. Subsequently, a multicomponent injection mold was developed based on the geometry of the ISO 527 type I specimen, in which samples overmolded with PP and PP–coconut-fiber composite, with the overlap in the central area, were obtained to evaluate the adhesive strength of dissimilar materials. The objective of this study was to evaluate the bond between PP and PP–coconut-fiber composite under different processing conditions using an adhesive strength testing device to perform a pure shear analysis. The experimental conditions followed a statistical design considering four factors in two levels and a significance level of 5%. The results indicated that adhesive strength increased significantly as the overlap area increased. It was observed that temperature and injection flow rate were the factors that most contributed to strengthening the bonds of dissimilar materials.


2018 ◽  
Vol 24 (12) ◽  
pp. 9124-9127
Author(s):  
P. I Purboputro ◽  
M. A Hendrawan

2013 ◽  
Vol 594-595 ◽  
pp. 78-82 ◽  
Author(s):  
Che Mohd Ruzaidi Ghazali ◽  
Alida Abdullah ◽  
Abdullah Mohd Mustafa Al Bakri ◽  
Hussin Kamarudin ◽  
Anis Nadhirah Ismail

In general, filament winding technique is used to fabricate the composite pipes using continuous fiber and matrix resin. In this study, fly ash based geopolymer resin composites reinforced by continuous glass fiber were used for fabrication and synthesized by different curing and sintering temperature, different pattern and different viscosity of geopolymer. The effects of that parameter on the product were investigated. The compressive properties of the resulting composite were determined on an Instron Universal Testing under compression mode and the results show that the helical pattern with low viscosity cured at 75°C give the highest strength.


2018 ◽  
Vol 1 (3) ◽  
pp. 679-688
Author(s):  
Ondriani Ondriani ◽  
Sofyan M. Saleh ◽  
Muhammad Isya

Abstract: The cause of damage and strength reductionon highway flexible pavement isthe low strength and durability on the wear layer. To cope withthis problem, it is necessary to add some particular additivethat can increase the asphalt concrete performance. One of the additional material that can be used are plastic. Stone ash, cement and fly ash has been commonly used as a filler in asphalt mixture. But these kind of filler was hard to get and the price were relatively expensive. The coconut fiber ash wich has a specific grafity greater than asphalt is expected to be one alternative. This research aims to determine the influence of plastic wastecombination substitution into the asphalt pen. 60/70 and the use of coconut fiber ash as filler on AC-WC mixture performance. The plastic used in this research is polyethylene terephthalate, polypropylene and polystyrene. The early stages of this research is to find the optimum asphalt content (OAC). After OAC obtained, then the specimens were mixed without and with the combination substitution of plastic waste as much as 2.7%; 4.7%; 6.7% against the weight of  asphalt on OAC + 0.5% with and without the coconut fiber ash as a filler. The study results showed the use of plastic waste combination and the coconut fiber ash can not improve the durability value. The highest value of durability obtained at 4.7% combination substitution of plastic waste, it was 77.53%, While the lowest was in substitution of 6.7% plastic waste combination with 38.27% coconut fiber  ash as a filler. The duration value of AC-WC mixture with plastic waste combination substitution and the use of coconut fiber ash filler did not meet the requirement that is 90%.Abstrak: Penyebab kerusakan dan penurunan kekuatan perkerasan lentur jalan raya adalah rendahnya kekuatan dan keawetan di dalam lapisan aus. Untuk menanggulangi hal ini dibutuhkan suatu bahan tambah yang dapat meningkatkan lapis aspal beton. Salah satu bahan tambah yang dapat di gunakan adalah plastik. Abu batu, semen dan fly ash sudah biasa digunakan sebagai filler dalam campuran aspal. Tetapi, jenis filler tersebut susah didapatkan dan harganya relatif mahal. Abu serabut kelapa yang memiliki berat jenis lebih besar dari aspal, diharapkan dapat menjadi alternatifnya. Penelitian ini bertujuan untuk mengetahui nilai durabilitas campuran AC-WC menggunakan kombinasi limbah plastik dan abu serabut kelapa. Plastik yang digunakan pada penelitian ini adalah Polyethylene Terephthalate, Polypropylenedan Polystyrene. Tahap awal penelitian ini adalah mencari kadar aspal optimum (KAO). Setelah KAO didapat kemudian dilakukan pembuatan benda uji tanpa dan dengan substitusi kombinasi limbah plastik sebesar 2,7%; 4,7%; 6;7% terhadap berat aspal pada KAO + 0,5% tanpa dan dengan abu serabut kelapa sebagai filler. Hasil penelitian menunjukkan penggunaan kombinasi limbah plastik tidak dapat meningkatkan nilai durabilitas. Nilai durabilitas tertinggi didapat pada substitusi kombinasi limbah plastik 4,7% yaitu 77,53% sedangkan yang terendah terdapat pada subtitusi kombinasi limbah plastik 6,7% dengan filler abu serabut kelapa yaitu 38,27%. Nilai Durabilitas campuran AC-WC dengan substitusi kombinasi limbah plastik   dan penggunaan abu serabut kelapa sebagai filler tidak memenuhi syarat yaitu 90%.


2018 ◽  
Vol 5 (2) ◽  
pp. 94
Author(s):  
Yan Kondo ◽  
Muhammad Arsyad

The long-term goal of this research is to makecoconut fiber composite as one of the technical material, forbuilding material such as ceiling board or for automotivematerial such as bumper. While the specific target to be achievedin this research is to determine the influence of the concentrationof alkali solution on soaking coconut fiber to the content of lignin,cellulose, and hemicelluloses of coconut fiber. To achieve theobjectives and targets, the method of implementation of thisresearch is divided into 4 (four) steps, namely (1) preparation, (2)immersion, (3) testing, and (4) analysis. Coconut fiber is treatedby soaking coco fiber for 3 hours in sodium hydroxide (alkali)solution with concentrations of 5%, 10%, 15%, 20%, 25%, 30%,35%, 40%, 45%, 50%, and 55%. Once soaked, the coconut fiberis rinsed with aqua, then dried in an oven at 60°C for 4 hours.After that, a composition test with hydrolysis method todetermine the content of lignin, cellulose, and hemicelluloses.Each variable will be tested 3 (three) times. The data obtainedwill be analyzed statistically by applying descriptive method,where all data obtained will be presented in table, graphic, orimage form. Based on the tables, graphs, and images will beanalyzed and drawn conclusions. The results to be achieved inthis study is to determine the content of lignin, cellulose, andhemicelluloses coconut fiber due to alkali treatment for 3 hourswith a variable concentration of alkali solution. Based on theresults and discussion it can be concluded that soaking coconutfiber in alkaline solution degrades the content of hemicelluloses,cellulose and lignin.


2021 ◽  
Vol 891 (1) ◽  
pp. 012002
Author(s):  
Ismadi ◽  
S S Munawar ◽  
S S Kusumah ◽  
B Subiyanto ◽  
D Purnomo ◽  
...  

Abstract The utilization of natural fibers as reinforcing composites has been widely used. Indonesia has natural fibers abundantly such as ijuk fiber (Arenga pinnata), sisal fiber (Agave Sisalana) and coconut fiber (Cocos Nucifera). Random orientation application of the fiber in composites affected to the lower properties. Therefore, the particular orientation of fibres wereapplied in manufacturing of composite by laminating the short fiber with Polyurethane (PU) adhesive. The size and moisture content (MC) of fiber were 14-15 cm and +10%, respectively. The resin content of PU was 5% by weight of the laminate sheet. The mixture of fibers and PU adhesive was cold pressed for 5 minutes with a thickness of 0.5-1 mm. The laminate sheet of PU-adhesive fibers then mixed with unsaturated polyester resin layer by layer. The fiber laminate composition of composite was varieted such as 1, 2 and 3 layers. The hand layup method was used in the manufacturing of the composite. The physical and mechanical testing like density, moisture content, water absorption, thickness swelling, flexural test (adapt to ASTM D 790 standard) and tensile test (adapt to ASTM D 638 standard) were carried out. In additionmorphological analyses were investigated on composite samples. The results research showed that the net density of polyester, ijuk fiber sheet, sisal fiber sheet, and coconut fiber sheet were 1.21, 0.9, 0.53 and 0.22 g/cm3. The range of composite density was 0.99-1.15 g/cm3. The single layer composite had lower thickness swelling and water absorption than those of the three layers composite. The highest tensile strength of three layers of sisal fiber composite was higher (33.84 MPa) than that of the three layers of coconut fiber composite (12.04 MPa). The flexural strength of double layers composite from fiber sisal was higher (63.16 MPa) than that of three layers coconut fiber composite (28.65 MPa).


Sign in / Sign up

Export Citation Format

Share Document