scholarly journals STUDY ON NONLINEAR PAVEMENT RESPONSES OF LOW VOLUME ROADWAYS SUBJECT TO MULTIPLE WHEEL LOADS / NETIESINĖS KELIO DANGOS PRIKLAUSOMYBĖS NUO MAŽO INTENSYVUMO KELIŲ, VEIKIAMŲ DAUGKARTINĖMIS RATŲ APKROVOMIS, TYRIMAS

2011 ◽  
Vol 17 (1) ◽  
pp. 45-54 ◽  
Author(s):  
Minkwan Kim ◽  
Joo Hyoung Lee

This paper describes numerical analyses on low volume roads (LVRs) using a nonlinear three-dimensional (3D) finite element model (FEM). Various pavement scenarios are analyzed to investigate the effects of pavement layer thicknesses, traffic loads, and material properties on pavement responses, such as surface deflection and subgrade strain. Each scenario incorporates a different combination of wheel/axle configurations and pavement geomaterial properties to analyze the nonlinear behavior of thinly surfaced asphalt pavement. In this numerical study, nonlinear stress-dependent models are employed in the base and subgrade layers to properly characterize pavement geomaterial behavior. Finite element analysis results are then described in terms of the effects of the asphalt pavement thickness, wheel/axle configurations, and geomaterial properties on critical pavement responses. Conclusions are drawn by the comparison of the nonlinear pavement responses in the base and subgrade in association with the effects of multiple wheel/axle load interactions. Santrauka Straipsnyje aprašoma skaitinė mažo intensyvumo kelių analizė, taikant netiesinį—erdvinį baigtinių elementų modelį. Skirtingi dangų paviršiaus variantai analizuojami siekiant ištirti, kokiąįtaką kelio dangos elgsenai, t. y. poslinkiams ir kelio pagrindo deformacijoms, turi dangų sluoksnių storiai, eismo apkrovos ir medžiagų savybės. Kiekvienas kelio dangos variantas turi skirtingas ratų arba ašies ir geometrinių savybių formas, kad būtų galima išanalizuoti netiesinę plonos asfalto dangos paviršiaus elgseną. Šioje skaitinėje analizėje nagrinėjami netiesiniai įtempių modeliai, kurie buvo taikomi pagrindo sluoksniams, siekiant tinkamai apibūdinti geometrinę kelio dangos elgseną. Baigtinių elementų analizės rezultatai toliau nagrinėjami atsižvelgiant į asfalto dangos storį ar ašies formą ir geometrines savybes, priklausomai nuo kritinės kelio dangos būklės. Išvados buvo gautos lyginant netiesines kelių dangos priklausomybes pagrindo sluoksnyje, atsižvelgiant į jų sąveiką su daugkartine ratų apkrova.

2011 ◽  
Vol 201-203 ◽  
pp. 1601-1605 ◽  
Author(s):  
Shang Ping Chen ◽  
Wen Juan Yao ◽  
Sheng Qing Zhu

In this paper, a nonlinear three-dimensional finite element model for super-long pile and soil interaction is established. In this model, contact elements are applied to simulate the nonlinear behavior of interaction of super-long pile and soil. A nonlinear elastic constitutive model for concrete is employed to analyze stress-strain relation of pile shaft under the axial load and the Duncan-Chang’s nonlinear constitutive model is used to reflect nonlinear and inelastic properties of soil. The side friction resistance, axial force, pile-tip resistance, and developing trend of soil plastic deformation are obtained and compared with measured results from static load tests. It is demonstrated that a super-long pile has the properties of degradation of side friction resistance and asynchronous action between side and pile-tip resistance, which is different from piles with a short to medium length.


2019 ◽  
Vol 11 (07) ◽  
pp. 1950070
Author(s):  
M. Nazemian ◽  
M. Chamani ◽  
M. Baghani

Gold and copper thin films are widely used in microelectromechanical system (MEMS) and nanoelectromechanical system (NEMS) devices. Nanoindentation has been developed in mechanical characterization of thin films in recent years. Several researchers have examined the effect of surface roughness on nanoindentation results. It is proved that the surface roughness has great importance in nanoindentation of thin films. In this paper, the surface topography of thin films is simulated using the extracted data from the atomic force microscopy (AFM) images. Nanoindentation on a rough surface is simulated using a three-dimensional finite-element model. The results are compared with the results of finite-element analysis on a smooth surface and the experimental results. The results revealed that the surface roughness plays a key role in nanoindentation of thin films, especially at low indentation depths. There was good compatibility between the results of finite-element simulation on the rough surface and those of experiments. It is observed that on rough films, at low indentation depths, the geometry of the location where the nanoindentation is performed is of major importance.


1996 ◽  
Vol 24 (4) ◽  
pp. 339-348 ◽  
Author(s):  
R. M. V. Pidaparti

Abstract A three-dimensional (3D) beam finite element model was developed to investigate the torsional stiffness of a twisted steel-reinforced cord-rubber belt structure. The present 3D beam element takes into account the coupled extension, bending, and twisting deformations characteristic of the complex behavior of cord-rubber composite structures. The extension-twisting coupling due to the twisted nature of the cords was also considered in the finite element model. The results of torsional stiffness obtained from the finite element analysis for twisted cords and the two-ply steel cord-rubber belt structure are compared to the experimental data and other alternate solutions available in the literature. The effects of cord orientation, anisotropy, and rubber core surrounding the twisted cords on the torsional stiffness properties are presented and discussed.


2007 ◽  
Vol 35 (3) ◽  
pp. 226-238 ◽  
Author(s):  
K. M. Jeong ◽  
K. W. Kim ◽  
H. G. Beom ◽  
J. U. Park

Abstract The effects of variations in stiffness and geometry on the nonuniformity of tires are investigated by using the finite element analysis. In order to evaluate tire uniformity, a three-dimensional finite element model of the tire with imperfections is developed. This paper considers how imperfections, such as variations in stiffness or geometry and run-out, contribute to detrimental effects on tire nonuniformity. It is found that the radial force variation of a tire with imperfections depends strongly on the geometrical variations of the tire.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1152
Author(s):  
Rafał Nowak ◽  
Anna Olejnik ◽  
Hanna Gerber ◽  
Roman Frątczak ◽  
Ewa Zawiślak

The aim of this study was to compare the reduced stresses according to Huber’s hypothesis and the displacement pattern in the region of the facial skeleton using a tooth- or bone-borne appliance in surgically assisted rapid maxillary expansion (SARME). In the current literature, the lack of updated reports about biomechanical effects in bone-borne appliances used in SARME is noticeable. Finite element analysis (FEA) was used for this study. Six facial skeleton models were created, five with various variants of osteotomy and one without osteotomy. Two different appliances for maxillary expansion were used for each model. The three-dimensional (3D) model of the facial skeleton was created on the basis of spiral computed tomography (CT) scans of a 32-year-old patient with maxillary constriction. The finite element model was built using ANSYS 15.0 software, in which the computations were carried out. Stress distributions and displacement values along the 3D axes were found for each osteotomy variant with the expansion of the tooth- and the bone-borne devices at a level of 0.5 mm. The investigation showed that in the case of a full osteotomy of the maxilla, as described by Bell and Epker in 1976, the method of fixing the appliance for maxillary expansion had no impact on the distribution of the reduced stresses according to Huber’s hypothesis in the facial skeleton. In the case of the bone-borne appliance, the load on the teeth, which may lead to periodontal and orthodontic complications, was eliminated. In the case of a full osteotomy of the maxilla, displacements in the buccolingual direction for all the variables of the bone-borne appliance were slightly bigger than for the tooth-borne appliance.


2011 ◽  
Vol 27 (3) ◽  
pp. 309-320 ◽  
Author(s):  
C.-Y. Fan ◽  
C.-K. Chao ◽  
C.-C. Hsu ◽  
K.-H. Chao

ABSTRACTAnterior Lumbar Interbody Fusion (ALIF) has been widely used to treat internal disc degeneration. However, different cage positions and their orientations may affect the initial stability leading to different fusion results. The purpose of the present study is to investigate the optimum cage position and orientation for aiding an ALIF having a transfacet pedicle screw fixation (TFPS). A three-dimensional finite element model (ALIF with TFPS) has been developed to simulate the stability of the L4/L5 fusion segment under five different loading conditions. The Taguchi method was used to evaluate the optimized placement of the cages. Three control factors and two noise factors were included in the parameter design. The control factors included the anterior-posterior position, the medio-lateral position, and the convergent-divergent angle between the two cages. The compressive preload and the strengths of the cancellous bone were set as noise factors. From the results of the FEA and the Taguchi method, we suggest that the optimal cage positioning has a wide anterior placement, and a diverging angle between the two cages. The results show that the optimum cage position simultaneously contributes to a stronger support of the anterior column and lowers the risk of TFPS loosening.


2011 ◽  
Vol 291-294 ◽  
pp. 3282-3286 ◽  
Author(s):  
Jiang Wei Wu ◽  
Peng Wang

In port crane industry, the surface hardening technique is widely used in order to improve the strength of wheel. But the hardening depth is chosen only by according to the experience, and the effect of different hardened depths is not studied theoretically. In this paper, the contact stresses in wheel with different hardening depth have been analyzed by applying three-dimensional finite element model. Based on this model, the ANSYS10.0 finite element software is used. The elastic wheel is used to verify the numerical results with the Hertz’s theory. Three different hardening depths, namely 10mm, 25mm and whole hardened wheel, under three different vertical loads were applied. The effect of hardening depth of a surface hardened wheel is discussed by comparing the contact stresses and contact areas from the numerical results.


2007 ◽  
Vol 44 (01) ◽  
pp. 16-26
Author(s):  
Ömer Eksik ◽  
R. Ajit Shenoi ◽  
Stuart S. J. Moy ◽  
Han Koo Jeong

This paper describes the development of a finite element model in order to assess the static response of a top-hat-stiffened panel under uniform lateral pressure. Systematic calculations were performed for deflection, strain, and stress using the developed model based on the ANSYS three-dimensional solid element (SOLID45). The numerical modeling results were compared to the experimental findings for validation and to further understand an internal stress pattern within the different constituents of the panel for explaining the likely causes of the panel failure. Good correlation between experimental and numerical strains and displacements was achieved.


2019 ◽  
Vol 14 ◽  
pp. 155892501988640
Author(s):  
Xiao-Shun Zhao ◽  
He Jia ◽  
Zhihong Sun ◽  
Li Yu

At present, most space inflatable structures are composed of flexible inflatable fabrics with complex undevelopable surfaces. It is difficult to establish a multi-dimensional folding model for this type of structure. To solve this key technical problem, the motion folding method is proposed in this study. First, a finite element model with an original three-dimensional surface was flattened with a fluid structure interaction algorithm. Second, the flattened surface was folded based on the prescribed motion of the node groups, and the final folding model was obtained. The fold modeling process of this methodology was consistent with the actual folding processes. Because the mapping relationship between the original finite element model and the final folding model was unchanged, the initial stress was used to modify the model errors during folding process of motion folding method. The folding model of an inflatable aerodynamic decelerator, which could not be established using existing folding methods, was established by using motion folding method. The folding model of the inflatable aerodynamic decelerator showed that the motion folding method could achieve multi-dimensional folding and a high spatial compression rate. The stability and regularity of the inflatable aerodynamic decelerator numerical inflation process and the consistency of the inflated and design shapes indicated the reliability, applicability, and feasibility of the motion folding method. The study results could provide a reference for modeling complex inflatable fabrics and promote the numerical study of inflatable fabrics.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Zhun Xu ◽  
Yikai Li ◽  
Shaoqun Zhang ◽  
Liqing Liao ◽  
Kai Wu ◽  
...  

Abstract Background Clinical studies have found that manipulations have a good clinical effect on sacroiliac joint (SIJ) pain without specific causes. However, the specific mechanisms underlying the effect of manipulations are still unclear. The purpose of this study was to investigate the effects of three common manipulations on the stresses and displacements of the normal SIJ and the strains of the surrounding ligaments. Methods A three-dimensional finite element model of the pelvis-femur was developed. The manipulations of hip and knee flexion (MHKF), oblique pulling (MOP), and lower limb hyperextension (MLLH) were simulated. The stresses and displacements of the SIJ and the strains of the surrounding ligaments were analyzed during the three manipulations. Results MOP produced the highest stress on the left SIJ, at 6.6 MPa, while MHKF produced the lowest stress on the right SIJ, at 1.5 MPa. The displacements of the SIJ were all less than 1 mm during the three manipulations. The three manipulations caused different degrees of ligament strain around the SIJ, and MOP produced the greatest straining of the ligaments. Conclusion The three manipulations all produced small displacements of the SIJ and different degrees of ligament strains, which might be the mechanism through which they relieve SIJ pain. MOP produced the largest displacement and the greatest ligament strains.


Sign in / Sign up

Export Citation Format

Share Document