scholarly journals EFFICIENCY OF A BRAKING PROCESS EVALUATING THE ROUGHNESS OF ROAD SURFACE

Transport ◽  
2006 ◽  
Vol 21 (1) ◽  
pp. 3-7 ◽  
Author(s):  
Marijonas Bogdevičius ◽  
Oleg Vladimirov

Transport traffic safety depends on many factors; one of them being the efficiency of the vehicle braking. The efficiency of the vehicle depends on the reaction of the driver, the braking system, the quality of tires, the characteristics of the road surface. The vehicle with the hydraulic braking system and a disc brake with the wheel has been investigated. The dynamic models of the disk brake assembly and the wheel have been constructed. The braking distances of the vehicle with a hydraulic ABS on the asphalt concrete pavement with shortwave roughness and different initial velocity are obtained.

2021 ◽  
pp. 43-48
Author(s):  
Dmitry V. Khablov

The issues of optimization of the vehicle anti-lock braking system are considered. To increase the reliability of the system, it is proposed to use a brake distribution system adaptive to the quality of the road surface for a quick stop of the vehicle while maintaining controllability. The system together with sensors angular wheel speed included a microwave Doppler displacement and speed sensor. The use of the specified Doppler sensor made it possible to achieve a more accurate coincidence of the dependence of the braking force on the degree of adhesion of the wheels to the road surface by monitoring the ratio between the angular and linear speeds of movement. In this way, it was possible to minimize the braking distance of the vehicle while maintaining controllability under various driving conditions.


Transport ◽  
2019 ◽  
Vol 34 (3) ◽  
pp. 363-372 ◽  
Author(s):  
Vidas Žuraulis ◽  
Vytenis Surblys ◽  
Eldar Šabanovič

This paper presents the technological measures currently being developed at institutes and vehicle research centres dealing with forefront road identification. In this case, road identification corresponds with the surface irregularities and road surface type, which are evaluated by laser scanning and image analysis. Real-time adaptation, adaptation in advance and system external informing are stated as sequential generations of vehicle suspension and active braking systems where road identification is significantly important. Active and semi-active suspensions with their adaptation technologies for comfort and road holding characteristics are analysed. Also, an active braking system such as Anti-lock Braking System (ABS) and Autonomous Emergency Braking (AEB) have been considered as very sensitive to the road friction state. Artificial intelligence methods of deep learning have been presented as a promising image analysis method for classification of 12 different road surface types. Concluding the achieved benefit of road identification for traffic safety improvement is presented with reference to analysed research reports and assumptions made after the initial evaluation.


2018 ◽  
Vol 216 ◽  
pp. 01011 ◽  
Author(s):  
Vladimir Churilin ◽  
Sergei Efimenko ◽  
Oleg Matvienko ◽  
Viktor Bazuev

The article reviews the issue of the stress-strain state of the road surface in the winter period as a result of roadbed soil heaving. The main purpose of the work is to determine the stress fields in the asphalt-concrete pavement, which is necessary for designing of frost-resistant roadbeds in the areas with seasonal freezing of roadbed soils. The following research methods were used: theoretical, laboratory, field. With consideration of different properties of materials and geometric dimensions of the road surface section, stress fields in the asphalt-concrete pavement during freezing were obtained with the use of the software product. Comparison of theoretical studies with the results of experimental and full-scale tests showed that the forms of theoretical solutions describe the stress fields in the freezing asphalt-concrete pavement quite accurately.


2021 ◽  
pp. 27-37
Author(s):  
Viktor Bogomolov ◽  
Valeriy Klimenko ◽  
Dmytro Leontiev ◽  
Oleksandr Kuripka ◽  
Andrii Frolov ◽  
...  

Problem. A malfunction of the service braking system of a wheeled vehicle (CTS) significantly affects road safety, especially when operating multi-axle vehicles with large masses. One of the ways to increase the level of road safety of multi-axle vehicles, when braking them using a spare (emergency) braking system, is the introduction of automated adaptive braking systems into the design of the brake drive of vehicles. The definition of the limits of the use of the adaptive braking system on vehicles with many axles is almost not disclosed in the scientific and technical literature, therefore, the issue of using such a system on vehicles with a large number of axles requires additional research. Purpose. The purpose of this work is to develop a simulation model for adaptive control of the braking process of a multi-axle vehicle using a spare (emergency) braking system, taking into account the simulation of the dynamics of the drive and the variability of the adhesion properties between the tire of the vehicle wheel and the road surface. Methodology. To achieve this goal, it is necessary to develop a simulation model of the brake drive in an adaptive mode, implement a model of the interaction of the tire with the road surface, and implement a model of the braking dynamics of a multi-axle vehicle in the event of a malfunction of its service brake system. Originality. The proposed key criterion (Kr) for changing the throttle section in electro-pneumatic pressure modulators, which provide adaptive air inlet or outlet from the corresponding brake chambers of the drive, during simulation, made it possible to simulate the operation of the drive circuits in the adaptive mode. It has been established that, depending on the potential for the realization of the adhesion between the tires of automobile wheels and the road surface, the pressure in the electro-pneumatic brake drive with its adaptive regulation can be increased by no more than 0.04 MPa.


2019 ◽  
Vol 7 (4) ◽  
pp. 68-73
Author(s):  
Ol'ga Hryanina ◽  
Elena Saksonova ◽  
Dmitry Abaev

The article uses a practical example to consider changes in the transport and operational state of the public highway and road surface, with the possibility of justifying and taking into account these changes in the design, operation and repair. The methodological approach of the road and road surface survey provides for the first stage of visual inspection of the road and identification of areas with visible defects of the existing roadbed and road surface. At the second stage, the asphalt roadbed was opened by pits in the most visible areas of damage in order to take samples of road clothing and subsequent analysis. Defects and causes of deformations of asphalt concrete pavement and existing roadbed were identified. Recommendations for eliminating the causes of deformations and strengthening the coating are given.


Author(s):  
A. Fihani ◽  
Hasyim Hasyim ◽  
I.D.M.A. Karyawan

The Street-Race Circuit is being built in the Mandalika Tourism Special Economic Zone (KEK), Central Lombok, West Nusa Tenggara. The construction is targeted to be completed, before the MotoGP event on this circuit is implemented in 2021. One of the infrastructure related to this, which also really needs to be built to support the smooth running of the 2021 MotoGP is the development of access to the circuit location. The analysis carried out includes the calculation of heavy equipment productivity. Heavy equipment productivity is determined based on cycle times, production per hour, number of heavy equipment used, the amount of operating costs per hour. The analysis was carried out for the road surface layer work, namely the Asphalt Concrete Base Course (AC-BC) work. Based on the results of the analysis, it was found that the production for 1 unit of asphalt mixing plant (AMP) was 49.80 tons/hour and 9 units of dump trucks were 2.34 tons/hour. The spreader using the asphalt finisher can spread 109.18 tons/hour. As for the compactor, which is 18.55 tons/hour for 2 units of tandem rollers and 27.47 tons/hour for 1 unit of pneumatic tire roller. Other equipment is 9.96 m2/hour for air compressor and 2.74 liter/hour for asphalt sprayer. Meanwhile, in the Asphalt Concrete Wearing Course (AC-WC) work, several tools have the same productivity as the AC-BC job, namely asphalt mixing plant, air compressor and asphalt sprayer. Meanwhile, 13 units of Dump Trucks amounted to 2,338 tons/hour, 1 unit of asphalt finisher of 72,787 tons/hour, 3 units of tandem rollers of 12,367 tons/hour, and 1 unit of pneumatic tire roller of 18.31 tons/hour. The total cost of using heavy equipment for road surface layer work is Rp. 4,967,657,344. The total cost based on the contract document is Rp. 5,042,082,622. So that there is a difference in costs of Rp. 74,425,278.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Choong Heon Yang ◽  
Jin Guk Kim ◽  
Sung Pil Shin

Road surface conditions have a direct effect on the quality of driving, which in turn affects overall traffic flow. Many studies have been conducted to accurately identify road surface conditions using diverse technologies. However, these previously proposed methods may still be insufficient to estimate actual risks along the roads because the exact road risk levels cannot be determined from only road surface damage data. The actual risk level of the road must be derived by considering both the road surface damage data as well as other factors such as speed. In this study, the road hazard index is proposed using smartphone-obtained pothole and traffic data to represent the level of risk due to road surface conditions. The relevant algorithm and its operating system are developed to produce the estimated index values that are classified into four levels of road risk. This road hazard index can assist road agencies in establishing road maintenance plans and budgets and will allow drivers to minimize the risk of accidents by adjusting their driving speeds in advance of dangerous road conditions. To demonstrate the proposed risk hazard assessment methodology, road hazards were assessed along specific test road sections based on observed pothole and historical travel speed data. It was found that the proposed methodology provides a rational method for improving traffic safety.


CANTILEVER ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 65-71
Author(s):  
Lie Ing Tan ◽  
Wildan Reza Pahlevi

The quality of implementation, drainage, materials that do not meet the standards, and overloaded from the specified class of roads are the main causes of road damage. Thus violations and negligence both in the implementation or maintenance of the road can cause a lot of traffic accidents, damage to vehicles, and various things that can disrupt the comfort and safety of drivers or pedestrians. The purpose of this study was to evaluate the effect of polypropylene plastic as an additive in the Asphalt Concrete-Wearing Course (AC-WC) layer. The use of polypropylene waste used as an additive is around 2.5%; 3.5%; 4.5%; and 5.5% of the asphalt weight. Based on the results of the analysis it was concluded that the mixture of AC-WC with the addition of polypropylene plastic experienced increased stability and decreased melting. Polypropylene plastic which can be used based on the five Marshall test parameters with the highest value of stability and lowest melting is 4.5% of the weight of asphalt.


2018 ◽  
Vol 1 (3) ◽  
pp. 667-678
Author(s):  
Mulyadi Mulyadi ◽  
Muhammad Isya ◽  
Sofyan M. Saleh

Abstract: Blangkejeren - Lawe Aunan road conditions overall is on the slopes of the mountains which is strongly influenced by local environmental factors such as drainage, topography, soil conditions, material conditions and vehicle load conditions across the road. It should be noted in order to avoid a decrease in the road quality due to road surface damage that can affect the traffic safety, comfort and smoothness.. Therefore, it is necessary to study the evaluation of the condition of the damaged road surface and the local factors that affect the damage in order to avoid a decrease in the roads quality. This study took place on Blangkejeren - Lawe Aunan roads started from Sta. 529 + 700 - Sta. 535 + 206. Generally, the condition of roads in this segment were found damage that disturb the comfort, smoothness and safety of the roads users. In this study, the primary data obtained by actual surveys in the form of data field length, width, area, and depth of each type of damage as well as local factors that lead to such damage. Actual field surveys conducted along the 5.506 km, with the distance interval of each segment is 100 m. The secondary data obtained from the relevant institutions and other materials related to this research. This study analyzed the PCI method (Pavement Condition Index) to obtain the level of damage in order to know how to handle, while for the identification of the damage done by observation factors descriptively appropriate observation in the field such as the number of damage points. The results of this study found that the type of damage caused to roads is damage to the cover layer, a hole, and curly. This type of damage that commonly occurs on the road Blangkejeren - Lawe Aunan is damage to the edges with a percentage of 87.30%. The local factors that greatly affect drainage on the percentage of damage is 62.00%. PCI average value is 13.47 which indicates a very bad condition (very poor) and requires maintenance or improvement of reconstruction.Abstrak: Kondisi jalan Blangkejeren – Lawe Aunan secara keseluruhan berada di lereng pegunungan sangat dipengaruhi oleh faktor lingkungan setempat seperti drainase, topografi, kondisi tanah, kondisi material dan kondisi beban kendaraan yang melintasi jalan tersebut. Hal ini perlu diperhatikan agar tidak terjadi penurunan kualitas jalan akibat kerusakan permukaan jalan sehingga dapat mempengaruhi keamanan, kenyamanan, dan kelancaran dalam berlalu lintas. Oleh karena itu, perlu dilakukan penelitian evaluasi terhadap kondisi permukaan jalan yang mengalami kerusakan serta faktor setempat yang mempengaruhi kerusakan tersebut agar tidak terjadi penurunan kualitas jalan. Penelitian ini mengambil lokasi di ruas jalan Blangkejeren – Lawe Aunan yang dimulai dari Sta. 529+700 - Sta. 535+206. Umumnya kondisi ruas jalan pada segmen ini banyak ditemukan kerusakan-kerusakan yang dapat mengganggu kenyamanan, kelancaran, dan keamanan pengguna jalan. Dalam penelitian ini data primer diperoleh dengan melakukan survei aktual lapangan yaitu berupa data panjang, lebar, luasan, dan kedalaman tiap jenis kerusakan serta faktor setempat yang mengakibatkan kerusakan tersebut. Survei aktual lapangan dilakukan sepanjang 5,506 km, dengan jarak interval setiap segmen adalah 100 m. Adapun data sekunder diperoleh dari lembaga terkait dan bahan lainnya yang berhubungan dengan penelitian ini. Penelitian ini dianalisis dengan metode PCI (Pavement Condition Index) untuk mendapatkan tingkat kerusakan agar diketahui cara penanganannya, sedangkan untuk identifikasi faktor kerusakannya dilakukan dengan pengamatan secara diskriptif sesuai hasil pengamatan di lapangan berupa jumlah titik kerusakan. Hasil penelitian ini didapatkan bahwa jenis kerusakan yang terjadi pada ruas jalan adalah kerusakan lapisan penutup, lubang, dan keriting. Jenis kerusakan yang umum terjadi pada ruas jalan Blangkejeren – Lawe Aunan adalah kerusakan tepi dengan persentase 87,30 %. Faktor setempat yang sangat mempengaruhi kerusakan adalah drainase dengan persentase 62,00%. Nilai PCI rata-rata yaitu 13,47 yang menunjukkan kondisi sangat buruk (very poor) dan memerlukan pemeliharaan peningkatan atau rekonstruksi.


Energies ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 9 ◽  
Author(s):  
Olga Orynycz ◽  
Karol Tucki ◽  
Andrzej Wasiak ◽  
Robert Sobótka ◽  
Arkadiusz Gola

The social cost, as one of the factors determining sustainability of socio-economic development, is strongly dependent upon a number of casualties and mortality in road accidents. The condition of car tires appears to be one of the important factors determining the occurrence of accidents. The vast majority of vehicles are tested every year at vehicle inspection stations. One of the elements affecting the result of the technical condition test and basically the quality of vehicle braking is the technical condition of the tires. Their technical condition is a very important factor responsible for the quality of acceleration, braking, maintaining, or changing the direction of driving. As a consequence, it has a significant impact on road safety. The aim of the study is to examine the impact of tires on the results of tests performed at a vehicle inspection station. The study presents the results of bench measurements of the impact of selected features of tire condition of two vehicles during routine periodic inspections at a vehicle inspection station (VIS). The focus was on an attempt to assess the impact of inflation pressure, age, and tire tread wear on the braking process. The technical studies performed might be a source for legal steps assuring better management of road safety. It can also be expected that the tire choice and condition may affect fuel consumption, and therefore the amount of energy consumed by the road transport.


Sign in / Sign up

Export Citation Format

Share Document