Investigating Recycled Filter Media in order to Remove Fluoride Compounds from Groundwater

Author(s):  
Youssef-Amine Boussouga ◽  
Marina Valentukeviciene ◽  
Ramune Zurauskiene

In this article, an enhanced recycled filter media for the removal of fluoride compounds from groundwater via filtration process was investigated. Experiments were made to investigate the influence of recycled filter media on removal efficiency of fluoride compounds. The recycled backwash cake based filter media used at Lithuanian water works were inves-tigated in a pilot test-bench constructed for this research in the Water Management Laboratory of Vilnius Gediminas Technical University.

Author(s):  
Augustine Chioma Affam

This study was conducted to investigate the removal of COD, BOD, turbidity and colour from leachate using vertical upflow filtration technique. Limestone media with a density of 2554kg/m3 was crushed and graded in sizes of 4-8 mm, 8-12 mm and 12-18 mm. Trial runs were done before the main experiment at an interval of 24 h analysis. Leachate was between pH 7.94 to 8.12 before experiments but increased to pH 8.42 after the filtration process. Maximum headloss at steady flow rate 20mL/min was 0.5 cm. The optimum treatment was achieved with 4 – 8 mm, 8 – 12 mm & 12 – 18 mm media size in combination and removal efficiency was 22 to 81 %, 22 to 75 %, 32 to 86 %, and 36 to 62 % for BOD, COD, turbidity and colour respectively. Vertical upflow roughing filter can be used for pre-treatment of leachate before further treatment.


2014 ◽  
Vol 6 (4) ◽  
pp. 451-455
Author(s):  
Kasparas Gražinskas ◽  
Aušra Mažeikienė ◽  
Marina Valentukevičienė

The article investigates the processes of removing suspended solids and ammonium ions from sludge liquor. Experimental research was carried out at the Water Management Department laboratory of Vilnius Gediminas Technical University applying an experimental bench made of filters equipped with the zeolites of a different fraction and other appliances. Laboratory testing looked at the use of natural sorbent zeolite for removing ammonium ions from sludge liquor mixing liquid with powdered zeolite and filtering through zeolite filter media. Research was carried out employing the particles of zeolite 1.0–1.5 mm; 2.0–2.5 mm; 2.5–3.15 mm in diameter. The highest efficiency of removing ammonium ions reached 76% and was obtained using zeolite particles 2.0–2.5 mm in diameter. Straipsnyje nagrinėjami skendinčiųjų medžiagų ir amonio jonų šalinimo iš dumblo skysčio procesai. Eksperimentiniai tyrimai buvo rengiami VGTU Vandentvarkos katedros laboratorijoje įrengtame eksperimentiniame stende, sudarytame iš filtrų, užpildytų skirtingos frakcijos ceolitų ir kitos įrangos. Laboratorinio tyrimo metu buvo nagrinėjama, kaip gamtinis sorbentas ceolitas naudojamas amonio jonams iš dumblo vandens šalinti, skystį maišant su ceolito milteliais ir filtruojant per ceolito užpildus. Tyrimai vykdyti naudojant 1,0–1,5 mm, 2,0–2,5 mm, 2,5–3,15 mm ceolito frakcijas. Šalinant amonio jonus iš dumblo skysčio, didžiausias efektyvumas, naudojant 2,0–2,5 mm frakcijos ceolitą, siekia 76 %.


Author(s):  
Augustine Chioma Affam

This study was conducted to investigate the removal of COD, BOD, turbidity and colour from leachate using vertical upflow filtration technique. Limestone media with a density of 2554kg/m3 was crushed and graded in sizes of 4-8 mm, 8-12 mm and 12-18 mm. Trial runs were done before the main experiment at an interval of 24 h analysis. Leachate was between pH 7.94 to 8.12 before experiments but increased to pH 8.42 after the filtration process. Maximum headloss at steady flow rate 20mL/min was 0.5 cm. The optimum treatment was achieved with 4 – 8 mm, 8 – 12 mm & 12 – 18 mm media size in combination and removal efficiency was 22 to 81 %, 22 to 75 %, 32 to 86 %, and 36 to 62 % for BOD, COD, turbidity and colour respectively. Vertical upflow roughing filter can be used for pre-treatment of leachate before further treatment.


2019 ◽  
Vol 79 (4) ◽  
pp. 771-778 ◽  
Author(s):  
Junho Lee ◽  
Myungjin Lee

Abstract This study has been carried out to evaluate the applicability of the pilot scale hybrid type of stormwater runoff treatment system for treatment of combined sewer overflow. Also, to determine the optimum operation parameter such as coagulation dosage concentration, effectiveness of coagulant usage, surface loading rate and backwashing conditions. The pilot scale stormwater filtration system (SFS) was installed at the municipal wastewater plant serving the city of Cheongju (CWTP), Korea. CWTP has a capacity of 280,000 m3/day. The SFS consists of a hydrocyclone coagulation/flocculation with polyaluminium chloride silicate (PACS) and an upflow filter to treat combined sewer overflows. There are two modes (without PACS use and with PACS use) of operation for the SFS. In case of no coagulant use, the range of suspended solids (SS) and turbidity removal efficiency were 72.0–86.6% (mean 80.0%) and 30.9–71.1% (mean 49.3%), respectively. And, the recovery rate of filter was 79.2–83.6% (mean 81.2%); the rate of remaining solid loading in filter media was 16.4–20.8% (mean 18.8%) after backwashing. The influent turbidity, SS concentrations were 59.0–90.7 NTU (mean 72.0 NTU), 194.0–320.0mg/L (mean 246.7mg/L), respectively. The range of PACS dosage concentration was 6.0–7.1mg/L (mean 6.7mg/L). The range of SS and turbidity removal efficiency was 84.9–98.2 (mean 91.4%) and 70.7–96.3 (mean 84.0%), respectively. It was found that removal efficiency was enhanced with PACS dosage. The recovery rate of filter was 92.0–92.5% (mean 92.3%) the rate of remaining solid loading in filter media was 6.1–8.2% (mean 7.2%) after backwashing. In the case of coagulant use, the particle size of the effluent is bigger than influent particle size. The results showed that SFS with PACS use more effective than without PACS use in SS and turbidity removal efficiency and recovery rate of filter.


2015 ◽  
Vol 74 (7) ◽  
Author(s):  
Aziatul Niza Sadikin ◽  
Mohd Ghazali Mohd Nawawi ◽  
Norasikin Othman ◽  
Roshafima Rasit Ali ◽  
Umi Aisah Asli

The aim of this research is to evaluate the feasibility of the fibrous media for removal of total suspended solid and oil grease from palm oil mill effluent (POME). Wet lay-up method was adopted for filter fabrication where empty fruit bunches (EFB) were matted together with chitosan in non-woven manner. Chitosan-filled filter media were tested for their ability to reduce Total Suspended Solids (TSS) and Oil & Grease (O&G) from palm oil mill effluent. Filtration process results indicated that chitosan-filled filter media filtration only removed up to 28.14% of TSS and 29.86% of O&G. 


2019 ◽  
pp. 152808371986693
Author(s):  
Kyung Chul Sun ◽  
Jung Woo Noh ◽  
Yeong Og Choi ◽  
Sung Hoon Jeong ◽  
Yeon Sang Kim

As development of industrialization grows constantly, the purification of hazardous solid particles and ions is one of the most important topics in environment and ecosystem. In this report, we designed and developed a novel and advanced type of filter media for the removal of both solid particles and hazardous ions, we choose Cs+ and Ca2+ here, by enclosing zeolite in wet-laid nonwoven media. The performance of the prepared filter media was evaluated by continuous sorption experiments, which were followed by solid particles and ion-removal efficiency studies. The prepared filter media showed excellent uniformity. The prepared filter media exhibited a solid removal efficiency rate which ranged from 80 to 82%, and the initial removal efficiency of ions exceeded 99%. These values are in effect as the main layer in the completed liquid filter media and for the next step to prepare the completed multi-layered liquid filter units. The results here suggest that this novel filter media can be used in high-efficiency and multi-functional liquid filter units for residential and industrial engineering.


2016 ◽  
Vol 24 (2) ◽  
pp. 27-37
Author(s):  
Ji-Ah Kim ◽  
Byeong-Jun Kim ◽  
Tae-Hoon Kim ◽  
Jae-Ro Park ◽  
I-Song Choi ◽  
...  

2016 ◽  
Vol 24 (1) ◽  
pp. 27-36
Author(s):  
Ji-Ah Kim ◽  
Byeong-Jun Kim ◽  
Tae-Hoon Kim ◽  
Won-Jae Kim ◽  
Gwang-Hyeon Jang ◽  
...  

2016 ◽  
Vol 74 (12) ◽  
pp. 2795-2806
Author(s):  
M. Manga ◽  
B. E. Evans ◽  
M. A. Camargo-Valero ◽  
N. J. Horan

The effect of sand filter media thickness on the performance of faecal sludge (FS) drying beds was determined in terms of: dewatering time, contaminant load removal efficiency, solids generation rate, nutrient content and helminth eggs viability in the dried sludge. A mixture of ventilated improved pit latrine sludge and septage in the ratio 1:2 was dewatered using three pilot-scale sludge drying beds with sand media thicknesses of 150, 250 and 350 mm. Five dewatering cycles were conducted and monitored for each drying bed. Although the 150 mm filter had the shortest average dewatering time of 3.65 days followed by 250 mm and 350 mm filters with 3.83 and 4.02 days, respectively, there was no significant difference (p > 0.05) attributable to filter media thickness configurations. However, there was a significant difference for the percolate contaminant loads in the removal and recovery efficiency of suspended solids, total solids, total volatile solids, nitrogen species, total phosphorus, chemical oxygen demand, dissolved chemical oxygen demand and biochemical oxygen demand, with the highest removal efficiency for each parameter achieved by the 350 mm filter. There were also significant differences in the nutrient content (NPK) and helminth eggs viability of the solids generated by the tested filters. Filtering media configurations similar to 350 mm have the greatest potential for optimising nutrient recovery from FS.


Sign in / Sign up

Export Citation Format

Share Document