Methods for Improving Energy Performance of Single-family Buildings in Poland’s Climatic Conditions

Author(s):  
Hanna Jędrzejuk ◽  
Maciej Jaworski ◽  
Michał Chwieduk

The effect of standard means of thermal upgrading of buildings on energy performance indices is studied in the paper. The following was considered: improving thermal performance of the envelope (walls, roof, floors over unheated cellars or ground-floor slabs, windows, and doors); using exterior blinds during heating and cooling seasons; using heat recovery (recuperation) in a forced ventilation system; reducing the ventilation air flow rate; and improving air-tightness of a building. The calculations were performed for a number of variants. Seven locations in Poland were selected based on outdoor climate conditions. Various standards of thermal performance of the building envelope, internal heat capacities, and ventilation rates were applied. Variations in internal heat gains, depending on the presence of occupants (heat gains from occupants and from lighting) were considered. Due to a dynamic nature of the energy processes that take place in a building, the simplified hourly method 5R1C was used in calculations. It was verified whether single-family buildings constructed in a way that is typically found in Poland, i.e. buildings with very high heat capacity and equipped with a forced ventilation system, can meet more stringent energy performance requirements.

2019 ◽  
Vol 110 ◽  
pp. 01016
Author(s):  
Dmitry Shiryaev ◽  
Andrey Benuzh

Residential sector in Russia makes up a significant part in the total energy demand of the country. The article demonstrates sensible energy saving potential in case of a single-family house in different climate conditions of the Russian Federation. Modern tools of building energy performance simulation and renewable energy modeling demonstrated a significant effect of the complex energy efficiency technologies, such as using of modern highly insulated constructional materials, installation of efficient heating, ventilation and air conditioning systems, and implementation of sustainable energy. Annual energy use dramatically declines in comparing with buildings built according to outdated technologies. In particular, the use of photovoltaic modules can meet more than half of the building's energy demand and ensure the autonomy of a building during the warm season. These values differ depending on the location due to the large territory and diverse climatic conditions from the Mediterranean in the south to the Arctic ones in the north.


Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4549 ◽  
Author(s):  
Aleksandra Specjał ◽  
Aleksandra Lipczyńska ◽  
Maria Hurnik ◽  
Małgorzata Król ◽  
Agnieszka Palmowska ◽  
...  

Reduction of the primary energy consumption is a crucial challenge for the building sector due to economic and environmental issues. Substantial savings could be achieved within the household. In this paper, we investigate the energy performance of a single-family house located in the temperate climate. The assessment is based on the comprehensive thermal diagnostic of the building performed on-site and via computational analyses. The on-site measurements included diagnostics of the building envelope, heat source, heating and domestic hot water system, ventilation system, and indoor environmental quality. Analyses confirmed that the studied building, which was built in 2008, meets the legislation requirements for the primary energy usage at that time and nowadays. However, results show discrepancies between energy performance obtained through on-site measurements and computational methods following regulations. Partially, discrepancies are a result of differences on normative values and how the building is operated in practice. It is also showed how important the role in the assessment of energy consumption through measurements is played by the measurement period.


2020 ◽  
pp. 50-64
Author(s):  
Kuladeep Kumar Sadevi ◽  
Avlokita Agrawal

With the rise in awareness of energy efficient buildings and adoption of mandatory energy conservation codes across the globe, significant change is being observed in the way the buildings are designed. With the launch of Energy Conservation Building Code (ECBC) in India, climate responsive designs and passive cooling techniques are being explored increasingly in building designs. Of all the building envelope components, roof surface has been identified as the most significant with respect to the heat gain due to the incident solar radiation on buildings, especially in tropical climatic conditions. Since ECBC specifies stringent U-Values for roof assembly, use of insulating materials is becoming popular. Along with insulation, the shading of the roof is also observed to be an important strategy for improving thermal performance of the building, especially in Warm and humid climatic conditions. This study intends to assess the impact of roof shading on building’s energy performance in comparison to that of exposed roof with insulation. A typical office building with specific geometry and schedules has been identified as base case model for this study. This building is simulated using energy modelling software ‘Design Builder’ with base case parameters as prescribed in ECBC. Further, the same building has been simulated parametrically adjusting the amount of roof insulation and roof shading simultaneously. The overall energy consumption and the envelope performance of the top floor are extracted for analysis. The results indicate that the roof shading is an effective passive cooling strategy for both naturally ventilated and air conditioned buildings in Warm and humid climates of India. It is also observed that a fully shaded roof outperforms the insulated roof as per ECBC prescription. Provision of shading over roof reduces the annual energy consumption of building in case of both insulated and uninsulated roofs. However, the impact is higher for uninsulated roofs (U-Value of 3.933 W/m2K), being 4.18% as compared to 0.59% for insulated roofs (U-Value of 0.33 W/m2K).While the general assumption is that roof insulation helps in reducing the energy consumption in tropical buildings, it is observed to be the other way when insulation is provided with roof shading. It is due to restricted heat loss during night.


Author(s):  
Darija Gajić ◽  
Erdin Salihović ◽  
Nermina Zagora

Yielding from an overall quantitative study of the residential sector of Bosnia and Herzegovina (B&H), this chapter concentrates on the ratio between single-family and collective housing, as well as on the urban-rural ratio of the single-family housing. Based on the data from the existing building stock (buildings built by 2014) and the statistical estimates, 23% of the buildings belong to the urban areas and 77% belong to the rural areas. The main goal was to study the correlation between the characteristics of the building envelope, the shape factor (A/V ratio) and the energy savings potential for the application of conventional measures of refurbishment of the building envelope of the single-family houses (type of buildings, which dominate in rural and urban areas). The chapter wraps up with recommendations for the adequate level of the energy performance indicator (energy need for heating) for the approved energy class for single-family houses located in the climate zone of the northern B&H.


2019 ◽  
Vol 43 (5) ◽  
pp. 398-427 ◽  
Author(s):  
Hamed H Saber ◽  
Wahid Maref ◽  
Ali E Hajiah

Many parts of the building envelopes contain enclosed airspaces. Also, the insulating glass units in fenestration systems, such as curtain walls, windows, and skylight devices, contain enclosed spaces that are normally filled with air or heavy gas such as argon, xenon, or krypton. The thermal resistance (R-value) of an enclosed space depends mainly on the type of the filling gas, emissivity of all surfaces that bound the space, the size and orientation of the space, the direction of heat flow through the space, and the respective temperatures of all surfaces that define the space. Assessing the energy performance of building envelopes and fenestration systems, subjected to different climatic conditions, requires accurate determination of the R-values of the enclosed spaces. In this study, a comprehensive review is conducted on the thermal performance of enclosed airspaces for different building applications. This review includes the computational and experimental methods for determining the effective R-value of enclosed reflective airspaces. Also, the different parameters that affect the thermal performance of enclosed airspaces are discussed. These parameters include the following: (a) dimensions, (b) inclination angles, (c) directions of heat flow, (d) emissivity of all surfaces that bound the space, and (e) operating conditions. Moreover, numerical simulations are conducted using a previously developed and validated model to investigate the effect of the inclination angle, direction of heat transfer, and the coating emissivity on the R-values of enclosed spaces when they are filled with different types of gases.


Spatium ◽  
2009 ◽  
pp. 19-22 ◽  
Author(s):  
Aleksandra Krstic-Furundzic ◽  
Vesna Kosoric

Improvement of energy performances of the existing buildings in the suburban settlement Konjarnik in Belgrade, by the application of solar thermal systems is the topic presented in this paper. Hypothetical models of building improvements are created to allow the benefits of applying solar thermal collectors to residential buildings in Belgrade climate conditions to be estimated. This case study presents different design variants of solar thermal collectors integrated into a multifamily building envelope. The following aspects of solar thermal systems integration are analyzed in the paper: energy, architectural, ecological and economic. The results show that in Belgrade climatic conditions significant energy savings and reduction of CO2 emissions can be obtained with the application of solar thermal collectors.


2019 ◽  
Vol 23 (Suppl. 5) ◽  
pp. 1695-1705
Author(s):  
Dimitrije Manic ◽  
Mirko Komatina ◽  
Biljana Vucicevic ◽  
Marina Jovanovic

Energy certification of buildings in Serbia was introduced in 2011 and energy label depends on energy need for heating per unit floor area of heated space, calculated by the fully prescribed monthly quasi-steady-state method defined by ISO 13790. In the Republic of Serbia, most of families live in single-family houses built before the energy certification of buildings was introduced. Therefore, the estimation of energy performance of the existing buildings is important for labeling, and evaluation of energy saving measures and energy strategies to be implemented. This paper examines the applicability of monthly method defined by National legislation on the existing buildings stock in Serbia, by comparing it to the more accurate dynamic simulation method. Typical single-family houses are taken as a test case, since they are responsible for about 76% of energy consumption for heating. The results show that the dynamic simulation method estimates 21% to 54% higher energy need for heating, compared to the monthly method. Also, the monthly method estimates up to 13% higher savings by typical building envelope energy saving measures, compared to the dynamic simulation. This paper recommends improvement in procedures for calculation of building energy performance index to better assess energy consumption, effects of energy saving measures, and create solid background for developing and implementing of energy saving strategies.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 2012 ◽  
Author(s):  
Jan Fořt ◽  
Jiří Šál ◽  
Jan Kočí ◽  
Robert Černý

Facing the consequences of climate change and fuel price rises, the achievement of the requirements for low-energy consumption of buildings has become a challenging issue. On top of that, increased demands on indoor hygrothermal conditions usually require the utilization of additional heating, ventilation, and air-conditioning (HVAC) systems to maintain a comfortable environment. On this account, several advanced and modern materials are widely investigated as a promising way for reduction of the buildings’ energy consumption including utilization of passive heating/cooling energy. However, the efficiency and suitability of passive strategies depending on several aspects including the influence of location, exterior climatic conditions, load-bearing materials used, and insulation materials applied. The main objective of this study consists of the investigation of the energy performance benefits gained by the utilization of advanced materials in plasters by computational modeling. Results obtained from a computational simulation reveal the capability of the studied passive cooling/heating methods on the moderation of indoor air quality together with the reduction of the diurnal temperature fluctuation. Achieved results disclose differences in terms of energy savings for even small variation in outdoor climate conditions. Additionally, the effectivity of passive cooling/heating alters considerably during the summer and winter periods. Based on the analysis of simulated heat fluxes, the potential energy savings related to improved thermal properties of the applied plaster layer reached up to 12.08% and thus represent an interesting passive solution towards energy sustainability to meet the criteria on modern buildings.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 2030
Author(s):  
Mansoureh Gholami ◽  
Alberto Barbaresi ◽  
Patrizia Tassinari ◽  
Marco Bovo ◽  
Daniele Torreggiani

In urban areas, a considerable proportion of energy demand is allocated to buildings. Since rooftops constitute one-fourth of all urban surfaces, an increasing amount of attention is paid to achieving the most efficient shapes and component designs compatible with every climate and urban context, for rooftops of varying sizes. In this study, three types of rooftop technologies, namely insulated, green roof, and rooftop greenhouse, are evaluated for energy and thermal performance using computer simulations. Water surface exposure, absorption, and intrusion are the three important factors in the calculation of hygrothermal models that impact energy consumption and building envelope performance; however, a few studies are specifically focused on providing realistic results in multi-dimensional hygrothermal models and the assessment of the impact of moisture in roofing solutions. This paper aims at evaluating the performance of three different roofing technologies through a two-dimensional hygrothermal simulation in software WUFI. To accomplish this, a precise localized microclimate model of a complex urban context on the scale of a neighborhood was employed to evaluate the cooling and heating loads of the buildings, the impact of the water content in the green roof on the thermal behavior of the roof surface, and the feasibility of designing a building with nearly zero cooling needs. A two-story building in the city center of Bologna, Italy is modelled. Simulation results have shown that during the cooling period, the performance of the designed rooftop greenhouse is the most effective by 50% reduction in cooling loads. Besides, the impact of moisture in green roofs has been detected as a negative factor for thermal and energy performance of the building in the Mediterranean climate. The results ultimately highlighted the capability of passively-designed rooftop greenhouses to create a building with nearly zero cooling needs.


2016 ◽  
Vol 26 (6) ◽  
pp. 733-743 ◽  
Author(s):  
Jorge S. Carlos

The aim of this paper is focused on the energy performance of buildings containing massive wall alternatives. The analysis comprised the comparison of the heating and cooling loads of seven characteristic wall configurations of one sample building with different dynamic internal heat capacity (ISO 13790:2008) in spite of the equal thermal resistance. The equal thermal resistance, as derived from simple steady-state condition, was imposed in order to allow research of effects solely attributed to the wall heat capacity on the building performance. A detached one floor dwelling exposed to different climate conditions in Portugal was analysed to illustrate the effect of the same wall in terms of energy demand during cold and hot weather conditions. A whole building dynamic modelling using EnergyPlus was employed for the energy analysis. The best thermal performance was obtained with massive walls that were located at the inner side, for a very heavy weight building and high building time constant.


Sign in / Sign up

Export Citation Format

Share Document