The impact of thermal mass on cold and hot climate zones of Portugal

2016 ◽  
Vol 26 (6) ◽  
pp. 733-743 ◽  
Author(s):  
Jorge S. Carlos

The aim of this paper is focused on the energy performance of buildings containing massive wall alternatives. The analysis comprised the comparison of the heating and cooling loads of seven characteristic wall configurations of one sample building with different dynamic internal heat capacity (ISO 13790:2008) in spite of the equal thermal resistance. The equal thermal resistance, as derived from simple steady-state condition, was imposed in order to allow research of effects solely attributed to the wall heat capacity on the building performance. A detached one floor dwelling exposed to different climate conditions in Portugal was analysed to illustrate the effect of the same wall in terms of energy demand during cold and hot weather conditions. A whole building dynamic modelling using EnergyPlus was employed for the energy analysis. The best thermal performance was obtained with massive walls that were located at the inner side, for a very heavy weight building and high building time constant.

Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4872 ◽  
Author(s):  
Enghok Leang ◽  
Pierre Tittelein ◽  
Laurent Zalewski ◽  
Stéphane Lassue

As the heating demands of buildings drop considerably, the use of solar walls makes increasing sense. One of the obstacles to the development of such walls is their need for on-site implementation by specialized companies. On the other hand, a storage wall is generally composed of heavy materials with high inertia, which prevents prefabrication of the solar component. To avoid this problem and allow for solar walls to be prefabricated in the factory, a novel approach to replacing this heavy wall with a lighter storage wall incorporating phase change materials (PCM) has been proposed. This paper aims to demonstrate the impact of PCM on the thermal energy performance once they have been integrated into the storage wall of the composite Trombe wall. Addressed herein will be the heat transfer exchange inside a house located in the northern part of France, where a composite Trombe wall has been fitted without PCM. Three configurations will be investigated—(1) the model house without the solar Trombe wall, defined as the reference configuration; (2) the model house integrating the concrete solar Trombe wall; and (3) the model house integrating the PCM solar Trombe wall. Two setpoint temperatures will be introduced—(a) a constant setpoint of 20 °C, and (b) a variable setpoint of 19 °C (14 h from 7:00 a.m. to 9:00 p.m.) and 16 °C (10 h from 9:00 p.m. to 7:00 a.m.). Furthermore, three different climate conditions will be adopted to run simulations—Paris-Orly, Lyon, and Nice. Dymola/Modelica, a dynamic thermal simulation tool, will be utilized to simulate the thermal performance of these defined configurations. The results obtained, regarding a solar Trombe wall installation that applies two distinct storage walls exposed to the weather of Paris, showed similar minimizations of the one-year energy heating demand inside the bedroom, equal to roughly 20% (i.e., 20.45% of concrete storage wall and 19.90% of PCM storage wall) compared to the reference configuration (i.e., the house with no solar Trombe wall). Based on the imposed setpoint temperature by means of night and day reductions, the resulting heating energy demand in the bedroom, through application of the two storage walls (concrete and PCM) and three different climatic regions could be minimized by 20.34% in Paris, 20.20% in Lyon, and 68.10% in Nice (for the concrete storage wall) vs. the reference configuration; and by 18.79% in Paris, 19.56% in Lyon, and 55.15% in Nice (for the PCM storage wall) vs. the reference configuration.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1226
Author(s):  
Beatriz Fraga-De Cal ◽  
Antonio Garrido-Marijuan ◽  
Olaia Eguiarte ◽  
Beñat Arregi ◽  
Ander Romero-Amorrortu ◽  
...  

Prefabricated solutions incorporating thermal insulation are increasingly adopted as an energy conservation measure for building renovation. The InnoWEE European project developed three technologies from Construction and Demolition Waste (CDW) materials through a manufacturing process that supports the circular economy strategy of the European Union. Two of them consisted of geopolymer panels incorporated into an External Thermal Insulation Composite System (ETICS) and a ventilated façade. This study evaluates their thermal performance by means of monitoring data from three pilot case studies in Greece, Italy, and Romania, and calibrated building simulation models enabling the reliable prediction of energy savings in different climates and use scenarios. Results showed a reduction in energy demand for all demo buildings, with annual energy savings up to 25% after placing the novel insulation solutions. However, savings are highly dependent on weather conditions since the panels affect cooling and heating loads differently. Finally, a parametric assessment is performed to assess the impact of insulation thickness through an energy performance prediction and a cash flow analysis.


2021 ◽  
Vol 13 (0) ◽  
pp. 1-6
Author(s):  
Rasa Džiugaitė-Tumėnienė ◽  
Domas Madeikis

The high share of global energy costs to create an indoor climate has been of increasing interest to the global community for several decades and is increasingly the focus of policy. This paper analyses the energy performance gap between actual energy consumption and energy demand obtained during the dynamic energy simulation and building certification. To identify the energy performance gap, an existing office of energy efficiency class B was selected as a case study. The simulation program IDA Indoor Climate and Energy was used to create a dynamic energy model, based on the designed documentation and the actual indoor climate parameters recorded by the building management system. The results of the case study showed that the accuracy and reliability of the results presented by the dynamic energy model of the building directly depend on the assumptions. The correct values of the internal heat gains, indoor climate parameters, human behavior, air quality levels at different times of the day and season, HVAC system operation parameters and operation modes, specific fan powers of ventilation systems, the seasonal energy efficiency of cooling equipment and characteristics of sun protection measures have to be selected.


Buildings ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 189 ◽  
Author(s):  
Javanroodi ◽  
M.Nik

Urbanization trends have changed the morphology of cities in the past decades. Complex urban areas with wide variations in built density, layout typology, and architectural form have resulted in more complicated microclimate conditions. Microclimate conditions affect the energy performance of buildings and bioclimatic design strategies as well as a high number of engineering applications. However, commercial energy simulation engines that utilize widely-available mesoscale weather data tend to underestimate these impacts. These weather files, which represent typical weather conditions at a location, are mostly based on long-term metrological observations and fail to consider extreme conditions in their calculation. This paper aims to evaluate the impacts of hourly microclimate data in typical and extreme climate conditions on the energy performance of an office building in two different urban areas. Results showed that the urban morphology can reduce the wind speed by 27% and amplify air temperature by more than 14%. Using microclimate data, the calculated outside surface temperature, operating temperature and total energy demand of buildings were notably different to those obtained using typical regional climate model (RCM)–climate data or available weather files (Typical Meteorological Year or TMY), i.e., by 61%, 7%, and 21%, respectively. The difference in the hourly peak demand during extreme weather conditions was around 13%. The impact of urban density and the final height of buildings on the results are discussed at the end of the paper.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7656
Author(s):  
Athanasios Tzempelikos ◽  
Seungjae Lee

While it is well-known that cool roofs can efficiently reduce cooling demand in buildings, their overall energy performance in mixed and cold climates has been a topic of debate. This paper presents a comprehensive simulation study to evaluate the combined impact of roof reflectivity, insulation level, and construction type (adhered vs attached) on annual energy demand and energy costs in the United States, for different buildings and climate zones. EnergyPlus was used to model three building types (retail, office, and school buildings) for the 16 most climate-representative locations in the US using typical reflectivity and insulation values. The results show that (i) roof reflectivity is equally important to roof insulation in warm climates; (ii) for low-rise offices and schools, the benefits of reflective roofs vs dark-colored roofs are clear for all US climatic zones, with higher savings in warm climates; (iii) for big-box-retail buildings, reflective roofs perform better except for cold climate zones 7–8; (iv) dark-colored, mechanically attached roofs achieve slightly better performance than reflective roofs in mixed and cold climates. Decision makers should consider building type, climatic conditions, roof insulation levels, and durability performance, along with roof reflectivity, when assessing the overall potential benefits of cool roofs.


2020 ◽  
Vol 10 (3) ◽  
pp. 893 ◽  
Author(s):  
Laura Cirrincione ◽  
Maria La Gennusa ◽  
Giorgia Peri ◽  
Gianfranco Rizzo ◽  
Gianluca Scaccianoce ◽  
...  

In the line of pursuing better energy efficiency in human activities that would result in a more sustainable utilization of resources, the building sector plays a relevant role, being responsible for almost 40% of both energy consumption and the release of pollutant substances in the atmosphere. For this purpose, techniques aimed at improving the energy performances of buildings’ envelopes are of paramount importance. Among them, green roofs are becoming increasingly popular due to their capability of reducing the (electric) energy needs for (summer) climatization of buildings, hence also positively affecting the indoor comfort levels for the occupants. Clearly, reliable tools for the modelling of these envelope components are needed, requiring the availability of suitable field data. Starting with the results of a case study designed to estimate how the adoption of green roofs on a Sicilian building could positively affect its energy performance, this paper shows the impact of this technology on indoor comfort and energy consumption, as well as on the reduction of direct and indirect CO2 emissions related to the climatization of the building. Specifically, the ceiling surface temperatures of some rooms located underneath six different types of green roofs were monitored. Subsequently, the obtained data were used as input for one of the most widely used simulation models, i.e., EnergyPlus, to evaluate the indoor comfort levels and the achievable energy demand savings of the building involved. From these field analyses, green roofs were shown to contribute to the mitigation of the indoor air temperatures, thus producing an improvement of the comfort conditions, especially in summer conditions, despite some worsening during transition periods seeming to arise.


2019 ◽  
Vol 110 ◽  
pp. 01016
Author(s):  
Dmitry Shiryaev ◽  
Andrey Benuzh

Residential sector in Russia makes up a significant part in the total energy demand of the country. The article demonstrates sensible energy saving potential in case of a single-family house in different climate conditions of the Russian Federation. Modern tools of building energy performance simulation and renewable energy modeling demonstrated a significant effect of the complex energy efficiency technologies, such as using of modern highly insulated constructional materials, installation of efficient heating, ventilation and air conditioning systems, and implementation of sustainable energy. Annual energy use dramatically declines in comparing with buildings built according to outdated technologies. In particular, the use of photovoltaic modules can meet more than half of the building's energy demand and ensure the autonomy of a building during the warm season. These values differ depending on the location due to the large territory and diverse climatic conditions from the Mediterranean in the south to the Arctic ones in the north.


2020 ◽  
Vol 12 (13) ◽  
pp. 5347
Author(s):  
José Luis Fuentes-Bargues ◽  
José-Luis Vivancos ◽  
Pablo Ferrer-Gisbert ◽  
Miguel Ángel Gimeno-Guillem

The design of near zero energy offices is a priority, which involves looking to achieve designs which minimise energy consumption and balance energy requirements with an increase in the installation and consumption of renewable energy. In light of this, some authors have used computer software to achieve simulations of the energy behaviour of buildings. Other studies based on regulatory systems which classify and label energy use also generally make their assessments through the use of software. In Spain, there is an authorised procedure for certifying the energy performance of buildings, and software (LIDER-CALENER unified tool) which is used to demonstrate compliance of the performance of buildings both from the point of view of energy demand and energy consumption. The aim of this study is to analyse the energy behaviour of an office building and the variability of the same using the software in terms of the following variables: climate zone, building orientation and certain surrounding wall types and encasements typical of this type of construction.


2019 ◽  
Vol 111 ◽  
pp. 04038
Author(s):  
Vasco Zeferina ◽  
Christina Birch ◽  
Rodger Edwards ◽  
Ruth Wood

The focused investigation of building design is necessary to understand and quantify the implication of different design parameters on their energy performance. The design of future buildings is a major challenge, as current designs may be inappropriate in a future with global warming due to climate change impacts. In addition this understanding is necessary to be able to predict timing and profile of future energy demand, which is crucial for the long-term planning of energy infrastructures – particularly electricity. In this paper, the Morris Elementary Effects method is used as a screening method, to identify the key parameters of the design and operation of office buildings that affect the estimation of space cooling peak load and annual energy demand. Internal heat gains, cooling set-point and ventilation rates are identified as the parameters with larger implications for both annual and peak space cooling demand. In future climate scenarios, the magnitude of change of annual space cooling demand is significantly (around five times) larger than the change in the peak demand. Asides from the potential increase of space cooling demand in future scenarios, the sensitivity of the space cooling demand relative to the change in design parameters is potentially much larger.


2019 ◽  
Vol 11 (9) ◽  
pp. 2519 ◽  
Author(s):  
Tsoka ◽  
Tsikaloudaki ◽  
Theodosiou

Replacing conventional pavements with the corresponding high albedo ones constitutes a well-known technique to improve outdoor thermal environment of modern cites. Since most of the existing studies assess the impact of the high albedo pavements at the pedestrian’s height and with respect to thermal comfort, this study aims to examine the effect of the application of highly reflective pavements on the heating and cooling energy needs of a building unit, located inside a dense urban area. Aiming at a higher accuracy of the energy performance simulations, an integrated computational method between ENVI-met model, Meteonorm weather data generator and Energy Plus software is established, to consider the site-specific microclimatic characteristics of the urban areas. The analysis is performed both for the design and the aged albedo values as significant changes may occur due to aging process. The analysis revealed that the application of cool materials on the ground surfaces only marginally affects the energy performance of the examined building unit, both for the design and the aged albedo value; changes on the annual heating and cooling energy demand, for both albedo scenarios did not exceed 1.5% revealing the limited potential of cool pavements regarding the improvement of the energy performance of urban building units.


Sign in / Sign up

Export Citation Format

Share Document