scholarly journals Orbital Radius during the Grazing Envelope Evolution

2018 ◽  
Vol 861 (2) ◽  
pp. 136 ◽  
Author(s):  
Abedallah Abu-Backer ◽  
Avishai Gilkis ◽  
Noam Soker
Keyword(s):  
2005 ◽  
Vol 14 (01) ◽  
pp. 153-169 ◽  
Author(s):  
R. W. BASS ◽  
A. DEL POPOLO

In a planetary or satellite system, idealized as n small bodies in an initially coplanar with concentric orbits around a large central body obeying the Newtonian point-particle mechanics, resonant perturbations will cause a dynamical evolution of the orbital radii except for cases with highly specific mutual relationships. In particular, the most stable situation can be achieved only when each planetary orbit is roughly twice as far from the Sun as the preceding one. This has been empirically observed by Titius (1766) and Bode (1778). By reformulating the problem as a hierarchical sequence of (unrestricted) 3-body problems and considering only the gravitational interactions among the central body and the body of interest and the adjacent outer body in the orbits, it is proved that the resonant perturbations from the outer body will destabilize the inner body (and vice versa) unless its mean orbital radius is a unique and specific multiple of β, the distal multiplier, of the inner body. In this way a sequence of concentric orbits can each stabilize the adjacent inner orbit, and since the outermost orbit is already tied to the collection of the inner orbits by conservation of total angular momentum, the entire configuration is stabilized.


1996 ◽  
Vol 11 (01) ◽  
pp. 161-170
Author(s):  
DANIELA TORDELLA ◽  
ROBERT E. BREIDENTHAL

A simple model is proposed to describe the flow into a black hole from the turbulent flow of matter in initially circular orbits about the black hole. Magnetic effects are not considered. The shear between fluid elements at slightly different orbital radii causes turbulent eddies to be formed. These eddies determine the dissipation rate of kinetic energy into thermal energy. For approximately circular orbits, the magnitude of the gravitational potential energy is always equal to twice the kinetic energy; the destruction of the latter resulting in a reduction in the orbital radius and hence the potential energy. In this model, the turbulent eddy rotation period is presumed to be determined by the gradient in the gravity acceleration, leading to an eddy period proportional to the orbital period. If the flow speeds are supersonic but not relativistic, then the turbulent eddy size is set by the product of the eddy rotation period and the speed of sound. At a certain smaller radius, the orbital speeds and hence the dissipation rate are so great that the speeds become relativistic and the molecular speed tends toward its limit [Formula: see text]. Then the effective eddy size is controlled by the product of the eddy rotation period and the speed of light. Using these estimates for the important eddy size, the dissipation rate, temperature, density and sinking speed as a function of the orbital radius and the rate of mass flow into the black hole are derived. Subject headings: accretion, accretion disks, stars evolution, turbulence, eddy, sonic eddy.


2020 ◽  
Author(s):  
Bijay_Kumar Sharma

Abstract The protocol describes the algorithm of arriving at LOD in a given past geologicel Epoch. First the lunar orbital radius of the given geologic epoch has to be determined. For this the velocity of recession of Moon for the accelerated phase has to be determined. The spatial integral of the reciprocal of Velocity of recession gives the transit time of Moon from desired orbit to the present orbit.Through several iterations the transit time is made to converge on the geologic epoch. Once we determine the desired orbital radius it has to be substituted in the LOD expression to determine the LOD in the given geologic epoch.


2019 ◽  
Vol 621 ◽  
pp. A101 ◽  
Author(s):  
Andreas Breslau ◽  
Susanne Pfalzner

Several planets have been found that orbit their host star on retrograde orbits (spin–orbit angle φ > 90°). Currently, the largest measured projected angle between the orbital angular momentum axis of a planet and the rotation axis of its host star has been found for HAT-P-14b to be ≈ 171°. One possible mechanism for the formation of such misalignments is through long-term interactions between the planet and other planetary or stellar companions. However, with this process, it has been found to be difficult to achieve retrogradely orbiting planets, especially planets that almost exactly counter-orbit their host star (φ ≈ 180°) such as HAT-P-14b. By contrast, orbital misalignment can be produced efficiently by perturbations of planetary systems that are passed by stars. Here we demonstrate that not only retrograde fly-bys, but surprisingly, even prograde fly-bys can induce retrograde orbits. Our simulations show that depending on the mass ratio of the involved stars, there are significant ranges of planetary pre-encounter parameters for which counter-orbiting planets are the natural consequence. We find that the highest probability to produce counter-orbiting planets (≈20%) is achieved with close prograde, coplanar fly-bys of an equal-mass perturber with a pericentre distance of one-third of the initial orbital radius of the planet. For fly-bys where the pericentre distance equals the initial orbital radius of the planet, we still find a probability to produce retrograde planets of ≈10% for high-mass perturbers on inclined (60° < i < 120°) orbits. As usually more distant fly-bys are more common in star clusters, this means that inclined fly-bys probably lead to more retrograde planets than those with inclinations <60°. Such close fly-bys are in general relatively rare in most types of stellar clusters, and only in very dense clusters will this mechanism play a significant role. The total production rate of retrograde planets depends then on the cluster environment. Finally, we briefly discuss the application of our results to the retrograde minor bodies in the solar system and to the formation of retrograde moons during the planet–planet scattering phase.


1991 ◽  
Vol 181 (2-3) ◽  
pp. 168-174 ◽  
Author(s):  
Ruidan Chen ◽  
Alan G. Marshall ◽  
Mingda Wang

2020 ◽  
Vol 500 (4) ◽  
pp. 4639-4657 ◽  
Author(s):  
Deaglan J Bartlett ◽  
Harry Desmond ◽  
Julien Devriendt ◽  
Pedro G Ferreira ◽  
Adrianne Slyz

ABSTRACT We study the displacements between the centres of galaxies and their supermassive black holes (BHs) in the cosmological hydrodynamical simulation Horizon-AGN, and in a variety of observations from the literature. The BHs in Horizon-AGN feel a subgrid dynamical friction force, sourced by the surrounding gas, which prevents recoiling BHs being ejected from the galaxy. We find that (i) the fraction of spatially offset BHs increases with cosmic time, (ii) BHs live on prograde orbits in the plane of the galaxy with an orbital radius that decays with time but stalls near z = 0, and (iii) the magnitudes of offsets from the galaxy centres are substantially larger in the simulation than in observations. We attribute the stalling of the infall and excessive offset magnitudes to the fact that dynamical friction from stars and dark matter is not modelled in the simulation, and hence provide a way to improve the BH dynamics of future simulations.


1971 ◽  
Vol 40 ◽  
pp. 371-374
Author(s):  
S. F. Dermott

The presence of numerous near-commensurabilities among pairs of mean motions and the strong correlation between orbital radius and mass in the satellite systems of the three major planets (particularly in the Saturn system) suggest that the orbits of the satellites have evolved considerably under the action of tides. It is shown that the source of dissipation could be boundary layer turbulence at the base of the planetary atmosphere. If this is the source of dissipation then it should be possible to estimate the depths of these atmospheres from the mean rates of energy dissipation.


2009 ◽  
Vol 5 (H15) ◽  
pp. 738-738
Author(s):  
Isella Andrea ◽  
John M. Carpenter ◽  
Laura Perez ◽  
Anneila I. Sargent

Using the Combined Array for Research in Millimeter-wave Astronomy (CARMA) we observed several proto-planetary disks in the dust continuum emission at 1.3 and 2.8 mm (Isella et al. 2009a, 2009b). The observations have angular resolution between 0.15 and 0.7 arcsecond, corresponding to spatial scales spanning from about the orbit of Saturn up to about the orbital radius of Pluto. The observed disks are characterized by a variety of radial profiles for the dust density. We observe inner disk clearing as well as smooth density profiles, suggesting that disks may form, or evolve, in different ways. Despite that, we find that the characteristic disk radius is correlated with the stellar age increasing from 20 AU to 100 AU over about 5 Myr. Interpreting our results in terms of the temporal evolution of a viscous α-disk, we estimate that (i) at the beginning of the disk evolution about 60% of the circumstellar material was located inside radii of 25-40 AU, (ii) that disks formed with masses from 0.05 to 0.4 solar masses and (iii) that the viscous timescale at the disk initial radius is about 0.1-0.3 Myr. Viscous disk models tightly link the surface density Σ(R) with the radial profile of the disk viscosity ν(R)∝ Rγ. We find values of γ ranging from -0.8 to 0.8, suggesting that the viscosity dependence on the orbital radius can be very different in the observed disks. We demonstrate that the similarity solution for the surface density for γ < 0 can explain the properties of some “transitional” disks without requiring discontinuities in the disk surface density. In the case of LkCa 15, a smooth distribution of material from few stellar radii to about 240 AU can produce both the observed SED and the spatially resolved continuum emission at millimeter wavelengths. For two sources, RY Tau and DG Tau, we observed the dust emission with a resolution as high as 0.15 arcsecond, which corresponds to a spatial scale of 20 AU at the distance of the two stars. The achieved angular resolution is a factor 2 higher than any existing observation of circumstellar disks at the same wavelengths and enable us to investigate the disk structure with unprecedent details. In particular, we present a first attempt to derive the radial profile of the slope of the dust opacity β. We find mean values of β of 0.5 and 0.7 for DG Tau and RY Tau respectively and we exclude that β may vary by more than ±0.4 between 20-70 AU. This implies that the circumstellar dust has a maximum grain size between 10 μm and few centimeters.


Sign in / Sign up

Export Citation Format

Share Document