Cutting Temperature Monitoring in Hard Turning by PCBN Inserts with Embedded Micro Sensor Arrays

Author(s):  
Linwen Li ◽  
Bin Li ◽  
Kornel F Ehmann ◽  
Xiaochun Li
2015 ◽  
Vol 813-814 ◽  
pp. 293-298 ◽  
Author(s):  
K. Venkatesh ◽  
T. Senthilvelan

Hard turning is recent upcoming technology through which surface quality of machined components can be enhanced while comparing with the traditional grinding method. Since the absence of metal cutting fluids during this process, numerous harmful effects on shop floor operators and possible negative impacts on environment can be eliminated. Normally some of the vital machinability aspects such as surface integrity of machined parts has been influenced by magnitude of cutting temperature which evolved in metal cutting interface. Therefore in this experimental investigation, the influence of various process control parameters on tool-chip interface temperature was evaluated during hard turning of AISI D3 tool steel in dry condition. The machining trials were conducted as per the L9 Taguchi DOE approach and subsequent experimental data were analysed with the use of Design-Expert® V7 statistical software. This experiment results revealed that feed rate is having predominant influence in determining the magnitude of cutting temperature followed by depth of cut and cutting speed whereas the influence of cutting tool nose radius is insignificant.


2004 ◽  
Vol 103 (1-2) ◽  
pp. 23-30 ◽  
Author(s):  
M. Stankova ◽  
P. Ivanov ◽  
E. Llobet ◽  
J. Brezmes ◽  
X. Vilanova ◽  
...  

2013 ◽  
Vol 1570 ◽  
Author(s):  
Jeffrey S. Bates ◽  
Seung Hei Cho ◽  
Prashant Tathireddy ◽  
Loren W. Rieth ◽  
Jules J. Magda

ABSTRACTHydrogels are considered smart materials because they respond to environmental stimuli. Sensors that monitor the body’s pH levels would be helpful for doctors to determine the severity of a patient’s condition, especially if they exhibit signs of shock. The motivation of this project is to create a biomedical device that can be worn sublingually or implanted into the body to help doctors with diagnosing a patient’s condition. The magnitude of the swelling/deswelling behavior can be measured by placing a sample of the hydrogel in a piezoresistive sensor. The degree of swelling/deswelling is directly proportional to the change in pH of the aqueous solution it is placed in. In this study, a variety of compositions of pH responsive hydrogels were designed and tested to determine the response time and magnitude for use in both macro and micro sensor arrays. This pressure sensor has been designed for use with thinner gels than have been used in the past. The results for swelling time and magnitude were compared to determine the effect of the thickness of the hydrogel samples on the swelling/deswelling kinetics of the material in order to find the appropriate composition, thickness and device that will yield the desired response rate and sensitivity.


2018 ◽  
Vol 20 ◽  
pp. 406-413 ◽  
Author(s):  
Ramanuj Kumar ◽  
Ashok Kumar Sahoo ◽  
Rabin Kumar Das ◽  
Amlana Panda ◽  
Purna Chandra Mishra

Author(s):  
Linwen Li ◽  
Bin Li ◽  
Xiaochun Li ◽  
Kornel F. Ehmann

Temperature-distribution measurements in cutting tools during the machining process are extremely difficult and remain an unresolved problem. In this paper, cutting temperature distributions are measured by thin film thermocouples (TFTCs) embedded into Polycrystalline Cubic Boron Nitride (PCBN) cutting inserts in the immediate vicinity of the tool-chip interface. Using these measurements, steady and dynamic phenomena during hard turning as well as the chip morphology and formation process were analyzed based on the cutting temperature distributions in the insert. The relationship between the cutting temperature-field distributions in the PCBN insert and the segmented chip formation is analyzed using temperature-distribution mapping. It is shown that the temperature-distribution in the cutting zone depends on the shearing band distribution in the chip and the thermal transfer rate from the heat generation zone to the cutting tool. Furthermore, it became evident that the material flow stress and the shearing bands greatly affect not only the chip formation morphology but also the cutting temperature field distributions in the cutting zone of the cutting insert.


2014 ◽  
Vol 800-801 ◽  
pp. 424-429
Author(s):  
Pei Rong Zhang ◽  
Zhan Qiang Liu

The paper investigates the effects of cutting edge preparation on cutting force, cutting temperature and tool wear for hard turning. An optimized characterization approach is proposed and five kinds of cemented tools with different edge preparation are adopted in the simulations by DEFROM-2DTM. The results show that both the forces and cutting temperature on the rake face climb up and then declines with the increasing of factor K (Sγ/Sα). While the temperature on flank face decrease with the increasing of the factor K. When the cutting conditions are identical, flank wear reduces while crater wear exacerbates before easing with the increasing of the factor K. The simulation results will provide valuable suggestions for optimization of cutting edge preparation for hard turning in order to obtain excellent machining quality and longer tool life.


Sign in / Sign up

Export Citation Format

Share Document