scholarly journals Phytochemical analyses and antibacterial activities of Erodium, Euphorbia, Logoecia and Tamarix species

2019 ◽  
Vol 13 (11) ◽  
pp. 1013-1020
Author(s):  
Khaldoun J Al-Hadid ◽  
Nehaya Al-Karablieh ◽  
Ahmad Sharab ◽  
Ihsan Mutlak

Introduction: Resistance against commonly used antibacterial agents has become a globally recognized threat to human health. Therefore, the development of new and effective antibacterial agents is necessary to treat infections caused by resistant bacterial strains; plants are a promising source of new agents to be tested. Methodology: The minimum inhibitory concentrations (MIC) of ethanolic extracts of Erodium gruinum, Euphorbia hierosolymitana, Logoecia cuminoides, and Tamarix tetragyna against 10 Gram-negative and 5 Gram-positive bacteria were determined using agar well diffusion and microtiter plate dilution methods, respectively. The phytochemical composition of the crude extracts of the plants was determined using HPLC. Results: Pseudomonas aeruginosa ATCC 27853, Klebsiella pneumoniae, Proteus mirabilis, and Acinetobacter baumannii were sensitive to E. gruinum and E. hierosolymitana extracts. P. aeruginosa ATCC 27853 and M. catarrhalis were sensitive to L. cuminoides extract. P. aeruginosa ATCC 27853, P. mirabilis, and K. pneumoniae were sensitive to T. tetragyna extracts. For Gram-positive bacteria, Staphylococcus aureus ATCC 33591 and ATCC 43300 were sensitive to E. gruinum and E. hierosolymitana extracts. S. aureus ATCC 43300 and ATCC 33591 and Group D Streptococcus were sensitive to T. tetragyna extract. All Gram-positive bacteria were completely resistant to the extract of L. cuminoides. The major phytochemical components of the plant extracts belonged to flavonoids, tannins, terpenes, quinones, phytosterols, phytoestrogens, carbohydrates, fatty acids, and coumarin. Conclusion: The study showed the potential of the development of antibacterial agents from these plants. Phytochemical analysis revealed compounds that are candidates for new antibacterial drugs.

2019 ◽  
Vol 32 (2) ◽  
pp. 427-434
Author(s):  
Maha R. Al Rimawi ◽  
Yusuf M. Al-Hiari ◽  
Amal G. Al-Bakri ◽  
Sanaa K. Bardaweel

Fluoroquinolones are clinically successful antibacterial agents. In this work a series of novel 7-substituted anilino-8-nitrofluoroquinolone esters (3-9), acids (10-16) and 8-amino reduced derivatives (17-23) of the later compounds were successfully prepared and characterized using spectroscopic techniques. All the compounds tested (10-23) showed good antibacterial activity against both Gram-positive and Gram- negative standard bacterial strains. Interestingly, 8-amino reduced derivatives (17-22) were more active against both standard strains than their 8-nitro acid analogues (10-15). Moreover, some targeted compounds have shown reasonable activity mainly against resistant gram positive bacteria. In particular compounds 10, 12 and 16 displayed a potent activity against methicillin resistant S. aureus (MRSA) with MIC values of 4.7, 2.3 and 1.2 μg/mL, respectively. Lipophilicity could be a plausible explanation of such higher activity against the gram positive resistant strain (MRSA). Biological screening of cytotoxic activity against five cancer cell lines using an in vitro cell culture system was achieved for all tested compounds. These derivatives have shown weak activity for most of them. Interestingly, more lipophilic nitroacids (10-15) were more active than their analogous reduced acids (17-22).


2006 ◽  
Vol 50 (6) ◽  
pp. 2261-2264 ◽  
Author(s):  
Hee-Soo Park ◽  
Hyun-Joo Kim ◽  
Min-Jung Seol ◽  
Dong-Rack Choi ◽  
Eung-Chil Choi ◽  
...  

ABSTRACT DW-224a showed the most potent in vitro activity among the quinolone compounds tested against clinical isolates of gram-positive bacteria. Against gram-negative bacteria, DW-224a was slightly less active than the other fluoroquinolones. The in vivo activities of DW-224a against gram-positive bacteria were more potent than those of other quinolones.


Revista CERES ◽  
2013 ◽  
Vol 60 (5) ◽  
pp. 731-734 ◽  
Author(s):  
Álan Alex Aleixo ◽  
Karina Marjorie Silva Herrera ◽  
Rosy Iara Maciel de Azambuja Ribeiro ◽  
Luciana Alves Rodrigues dos Santos Lima ◽  
Jaqueline Maria Siqueira Ferreira

Baccharis trimera (Less.) (Asteraceae), popularly know as "carqueja", is a species commonly used in folk medicine for the treatment or prevention of diseases. In this context, the purpose of this work was to study the antibacterial activity of crude hydroalcoholic extract from Baccharis trimera against Gram-positive bacterial strains (Staphylococcus aureus ATCC 29213, Staphylococcus saprophyticus ATCC 15305, Staphylococcus epidermidis ATCC 12228, Enterococcus faecalis ATCC 19433) and Gram-negative bacteria (Escherichia coli EHEC ATCC 43895, Pseudomonas aeruginosa ATCC 27853, Klebsiella pneumoniae ATCC 27736, Salmonella typhi ATCC 19430) of clinical interest. Antibacterial susceptibility was evaluated by broth microdilution assay following the CLSI (formerly the NCCLS) guidelines. The extract from B. trimera showed antibacterial activity against Gram-positive bacteria and the most interesting result was obtained against S. epidermidis that presented Minimal Inhibitory Concentration of 250μg/mL. These results indicate that B. trimera have bacterisostatic potential against Gram-positive bacterial strains of medical interest and could serve as a base for further studies on the use of isolated compounds from this species as future antimicrobials.


Foods ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 324 ◽  
Author(s):  
Shayma Thyab Gddoa Al-sahlany ◽  
Ammar Altemimi ◽  
Alaa Al-Manhel ◽  
Alaa Niamah ◽  
Naoufal Lakhssassi ◽  
...  

A variety of organisms produce bioactive peptides that express inhibition activity against other organisms. Saccharomyces cerevisiae is considered the best example of a unicellular organism that is useful for studying peptide production. In this study, an antibacterial peptide was produced and isolated from Saccharomyces cerevisiae (Baker’s yeast) by an ultrafiltration process (two membranes with cut-offs of 2 and 10 kDa) and purified using the ÄKTA Pure 25 system. Antibacterial peptide activity was characterized and examined against four bacterial strains including Gram-positive and Gram-negative bacteria. The optimum condition for yeast growth and antibacterial peptide production against both Escherichia. coli and Klebsiella aerogenes was 25–30 °C within a 48 h period. The isolated peptide had a molecular weight of 9770 Da, was thermostable at 50–90 °C for 30 min, and tolerated a pH range of 5–7 at 4 °C and 25 °C during the first 24 h, making this isolated antibacterial peptides suitable for use in sterilization and thermal processes, which are very important aspect in food production. The isolated antibacterial peptide caused a rapid and steady decline in the number of viable cells from 2 to 2.3 log units of gram-negative strains and from 1.5 to 1.8 log units of gram-positive strains during 24 h of incubation. The isolated antibacterial peptide from Saccharomyces cerevisiae may present a potential biopreservative compound in the food industry exhibiting inhibition activity against gram-negative and gram-positive bacteria.


2019 ◽  
Vol 2019 ◽  
pp. 1-4
Author(s):  
Yohannes Kelifa Emiru ◽  
Ebrahim Abdela Siraj ◽  
Tekleab Teka Teklehaimanot ◽  
Gedefaw Getnet Amare

Objective. To evaluate the antibacterial effects of the leaf latex of Aloe weloensis against infectious bacterial strains. Methods. The leaf latex of A. weloensis at different concentrations (400, 500, and 600 mg/ml) was evaluated for antibacterial activities using the disc diffusion method against some Gram-negative species such as Escherichia coli (ATCC 14700) and Pseudomonas aeruginosa (ATCC 35619) and Gram-positive such as Staphylococcus aureus (ATCC 50080) and Enterococcus fecalis (ATCC 4623). Results. The tested concentrations of the latex ranging between 400 and 600 mg·mL−1 showed significant antibacterial activity against bacterial strain. The highest dose (600 mg/ml) of A. weloensis leaf latex revealed the maximum activity (25.93 ± 0.066 inhibition zone) followed by the dose 500 mg/ml against S. aureus. The lowest antibacterial activity was observed by the concentration 400 mg/ml (5.03 ± 0.03) against E. coli. Conclusion. The results of the present investigation suggest that the leaf latex of A. weloensis can be used as potential leads to discover new drugs to control some bacterial infections.


2002 ◽  
Vol 70 (12) ◽  
pp. 6688-6696 ◽  
Author(s):  
Helen Karlsson ◽  
Christina Hessle ◽  
Anna Rudin

ABSTRACT The hygiene hypothesis postulates that the prevalence of allergy has increased due to decreased microbial stimulation early in life, leading to delayed maturation of the immune system. The aim of this study was to examine the cytokine pattern produced from cord blood mononuclear cells relative to adult cells after stimulation with bacterial strains from the normal flora. Mononuclear cells from cord and adult blood samples were stimulated with the following bacteria: Bifidobacterium adolescentis, Enterococcus faecalis, Lactobacillus plantarum, Streptococcus mitis, Corynebacterium minutissimum, Clostridium perfringens, Bacteroides vulgatus, Escherichia coli, Pseudomonas aeruginosa, Veillonella parvula, and Neisseria sicca. The levels of interleukin 12 (IL-12), tumor necrosis factor alpha (TNF-α), IL-10, and IL-6 were measured by enzyme-linked immunosorbent assay. The TNF-α production was also analyzed after blocking CD14, Toll-like receptor 2 (TLR-2), and TLR-4 prior to stimulation with bacteria. The levels of IL-12 and TNF-α were similar in cord and adult cells. Gram-positive bacteria induced considerably higher levels of IL-12 and TNF-α than gram-negative bacteria in both cord and adult cells. The levels of IL-6 were significantly higher in newborns than in adults, whereas the levels of IL-10 were similar in newborns and adults. Gram-negative and gram-positive bacteria induced similar levels of IL-6 and IL-10 in cord cells. L. plantarum bound or signaled through CD14, TLR-2, and TLR-4, whereas E. coli acted mainly through CD14 and TLR-4. These results indicate that the innate immune response in newborns to commensal bacteria is strong and also suggest that different bacterial strains may have differential effects on the maturation of the immune system of infants.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Pegah Javid ◽  
Hassan Zadabbas Shahabadi ◽  
Homeyra Amirkhani ◽  
Narges Amrollahi ◽  
Mohammad Sharif Ranjbar

Due to specific environmental and ecological conditions, mangrove forests are known as marine transitional zones between sea and land, and, as such, they host organisms with high ecological plasticity. The mangrove forests of Qeshm Island (Iran) are relatively pristine habitats and represent an ideal target for investigating patterns of either aquatic or benthic biodiversity. To provide insights on microbial diversity in this area, nineteen halophilic and halotolerant bacteria were isolated from the sediments in 2017 during low tide. The extracted bacterial strains were studied morphologically by streaking, initial observation of colonies and bacterial staining, and characterized using a battery of biochemical tests including KOH, MR, VP, urease, TSI, S/I/M, Mac, LIA, ODC, ADH, oxidase, catalase, and tryptophan deaminase. The optimum growth of halophilic bacteria was observed in salt concentrations from 5 to 20% NaCl, whereas the extreme halophilic Gram-positive strain grew in salt concentration of up to 30% NaCl. Molecular analyses were also carried out on four halophilic strains and one extreme halophilic gram-positive bacteria. Phylogenetic taxonomy analysis, after 16S rDNA gene Sanger sequencing, revealed that the halophilic bacteria were closely related to the strain types of the genus Bacillus including Bacillus licheniformis, Bacillus velezensis, Bacillus Paralicheniformis and Bacillus sp. with 99% bootstrap value. The extreme halophilic strain was associated to strains of Planococcus plakortidis with 100% bootstrap value.


2009 ◽  
Vol 63 (4) ◽  
Author(s):  
Neela Bhatia ◽  
Kakasaheb Mahadik ◽  
Manish Bhatia

AbstractA series of 1,3-diaryl-2-propen-1-ones and their indole analogs were synthesized and evaluated for antibacterial activity. Structures of newly synthesized compounds were confirmed by physicochemical, spectral and elemental analysis. All the compounds were screened for their antibacterial activities against four different bacterial strains. The QSAR studies were performed using Vlife MDS 3.5 software. QSAR equation revealed that selected electronic, steric and lipophilic parameters have good correlation with antibacterial activity. Best equations were selected on basis of the correlation coefficient (r 2) and the predictable ability of the equations. The present findings suggest that the 1,3-diaryl-2-propen-1-ones framework is an attractive template for structure optimization to achieve higher potency, lower toxicity, and a wider spectrum of antibacterial activity.


Sign in / Sign up

Export Citation Format

Share Document