scholarly journals Influence of Thermomechanical Treatment on the Mechanical Behavior of Protaper Gold versus Protaper Universal (A Finite Element Study)

2019 ◽  
Vol 7 (13) ◽  
pp. 2157-2161 ◽  
Author(s):  
Manar Galal ◽  
Amira Galal Ismail ◽  
Nada Omar ◽  
Mohamed Zaazou ◽  
Mohamed Abdallah Nassar

AIM: To compare and evaluate the influence of thermomechanical treatment of Protaper Gold file versus Protaper Universal file during testing of bending and torsion using finite-element analysis. METHODS: Two nickel-titanium NiTi rotary files (ProTaper Gold and ProTaper Universal) were used in this study. The files were imaged using stereomicroscope to produce 3D models. The behaviour of the instrument during bending and torsion was numerically analysed in CAD/CAM software package. RESULTS: Under bending, ProTaper, Gold showed higher flexibility and flexural resistance than ProTaper Universal. The highest stress was related at the cutting edge of both files. While during testing of torsion, the maximum amount of stresses was related to the base of the flutes in both files. ProTaper Gold showed higher torsional resistance than the ProTaper Universal file. CONCLUSION: Thermomechanical treatment improved the mechanical response (bending and torsional resistance) of NiTi files.

2019 ◽  
Vol 43 (1) ◽  
Author(s):  
Amira Galal Ismail ◽  
Mohamed Hussein Abdelfattah Zaazou ◽  
Manar Galal ◽  
Nada Omar Mostafa Kamel ◽  
Mohamed Abdulla Nassar

Abstract Background The objective of this study was to assess the bending and torsional properties of two nickel-titanium endodontic files with equivalent sizes and various designs and alloys using finite element analysis, ProTaper Next®X2 (PTN) size 25 with 0.06 taper and WaveOne Gold® (WOG) primary size 25 with 0.07 taper. Methodology Two-dimensional models of the two files PTN and WOG were created using computer tomography scanning and stereomicroscope to produce a three-dimensional digital model. Instrument behavior under bending or torsional conditions was numerically analyzed in SolidWorks software package. Result ProTaper Next® revealed higher flexibility than WaveOne Gold® when exposed to cantilever bending but showed higher stress accumulation than WOG. In terms of torsional resistance, PTN also revealed higher torsional resistance than WOG. Conclusion The geometry of the instrument, thermomechanical treatment of the alloy, and its composition affect the mechanical behavior (bending and torsion) of nickel titanium rotary files. Hence, being aware of these behavioral differences, each clinician will be able to use the adequate file according to the clinical situation in addition to the manufacturer’s instructions.


2016 ◽  
Vol 27 (4) ◽  
pp. 436-441 ◽  
Author(s):  
Mohamed I. El-Anwar ◽  
Salah A. Yousief ◽  
Engy M. Kataia ◽  
Tarek M. Abd El-Wahab

Abstract In the present study, GTX and ProTaper as continuous rotating endodontic files were numerically compared with WaveOne reciprocating file using finite element analysis, aiming at having a low cost, accurate/trustworthy comparison as well as finding out the effect of instrument design and manufacturing material on its lifespan. Two 3D finite element models were especially prepared for this comparison. Commercial engineering CAD/CAM package was used to model full detailed flute geometries of the instruments. Multi-linear materials were defined in analysis by using real strain-stress data of NiTi and M-Wire. Non-linear static analysis was performed to simulate the instrument inside root canal at a 45° angle in the apical portion and subjected to 0.3 N.cm torsion. The three simulations in this study showed that M-Wire is slightly more resistant to failure than conventional NiTi. On the other hand, both materials are fairly similar in case of severe locking conditions. For the same instrument geometry, M-Wire instruments may have longer lifespan than the conventional NiTi ones. In case of severe locking conditions both materials will fail similarly. Larger cross sectional area (function of instrument taper) resisted better to failure than the smaller ones, while the cross sectional shape and its cutting angles could affect instrument cutting efficiency.


Author(s):  
Zanza Alessio ◽  
Seracchiani Marco ◽  
Di Nardo Dario ◽  
Reda Rodolfo ◽  
Gambarini Gianluca ◽  
...  

2019 ◽  
Vol 86 ◽  
pp. 149-159 ◽  
Author(s):  
Yekutiel Katz ◽  
Gal Dahan ◽  
Jacob Sosna ◽  
Ilan Shelef ◽  
Evgenia Cherniavsky ◽  
...  

2012 ◽  
Vol 166-169 ◽  
pp. 1517-1520
Author(s):  
Wen Sheng Li ◽  
Kai Wang

In order to study on the flexural performances of beams strengthened with external bonded carbon fiber reinforced polymer(CFRP)sheets, nonlinear analysis is carried out by using software ANSYS. The results show that a reasonable finite element model, using a reasonable solution strategy can be a good simulation of CFRP flexural performance of reinforced concrete beams, and finite element analysis results with the experimental results have good consistency .The beams reinforced by carbon fiber polymer,the capacity of flexural resistance increased with the numbers of carbon fiber paste sheets, reinforced components of flexural capacity significantly improved, but the extent of its increase is not proportional with the numbers of carbon fiber paste sheets.


2013 ◽  
pp. 604-620
Author(s):  
S. Mohan ◽  
S. Murali

In computer vision, 3D modeling refers to the process of developing 3D representation of the real world objects with systematic procedure. The 3D models can be built based on geometric information about the object or scene to be modeled using CAD/CAM software. However, this approach needs prior knowledge of the objects in the scene like dimension, size of objects, distance from the object to camera, et cetera. To make the 3D models more photo realistic and convenient, images of the objects can be used to build the 3D models. In this chapter, the authors propose a method to extract 3D model from single view perspective image. The approach is based on edge length and exploiting symmetric objects in the scene. Later, an application of touring into picture is discussed with the proposed method.


2014 ◽  
Vol 635-637 ◽  
pp. 507-510
Author(s):  
Dong Peng Du ◽  
Zhe Wu ◽  
Juan Xing ◽  
Xiao Yan Gong ◽  
Xiang Wen Miu ◽  
...  

When strong exercise on human being body, respectively, under knees 30°, 60°,90°, using PRO/E5.0 software to establish the transverse patella fracture and anti-shearing force patella claws 3D models, then the two structure models were assembled and imported into ABAQUS10.1 software to establish the finite element model of patellar fracture fixed within patella claw, and analyzed the mechanical performance in perforce finite element model. Under the same boundary conditions, the maximum displacement and deformation of each components were different at every flexion angle. Compared with anti-shearing force patella claw and AO tensile force girdle, the patella claw with stronger resistance to tension and anti-shearing force was more stable. Deformation and displacement of patella claw in accordance with biomechanical research result that is needed by clinical. Its stability will satisfy clinical requirements for functional exercise.


Sign in / Sign up

Export Citation Format

Share Document