scholarly journals Therapeutic effects of calcium dobesilate on diabetic nephropathy mediated through reduction of expression of PAI-1

2012 ◽  
Vol 5 (1) ◽  
pp. 295-299 ◽  
Author(s):  
XIAOQIAN ZHANG
2021 ◽  
Vol 22 (2) ◽  
pp. 956
Author(s):  
Marlena Typiak ◽  
Agnieszka Piwkowska

Klotho was initially introduced as an antiaging molecule. Klotho deficiency significantly reduces lifespan, and its overexpression extends it and protects against various pathological phenotypes, especially renal disease. It was shown to regulate phosphate and calcium metabolism, protect against oxidative stress, downregulate apoptosis, and have antiinflammatory and antifibrotic properties. The course of diabetes mellitus and diabetic nephropathy resembles premature cellular senescence and causes the activation of various proinflammatory and profibrotic processes. Klotho was shown to exert many beneficial effects in these disorders. The expression of Klotho protein is downregulated in early stages of inflammation and diabetic nephropathy by proinflammatory factors. Therefore, its therapeutic effects are diminished in this disorder. Significantly lower urine levels of Klotho may serve as an early biomarker of renal involvement in diabetes mellitus. Recombinant Klotho administration and Klotho overexpression may have immunotherapeutic potential for the treatment of both diabetes and diabetic nephropathy. Therefore, the current manuscript aims to characterize immunopathologies occurring in diabetes and diabetic nephropathy, and tries to match them with antiinflammatory actions of Klotho. It also gives reasons for Klotho to be used in diagnostics and immunotherapy of these disorders.


2009 ◽  
Vol 297 (4) ◽  
pp. F1045-F1054 ◽  
Author(s):  
Yufeng Huang ◽  
Wayne A. Border ◽  
Daniel A. Lawrence ◽  
Nancy A. Noble

Administration of a mutant, noninhibitory PAI-1 (PAI-1R), reduces disease in experimental glomerulonephritis. Here we investigated the importance of vitronectin (Vn) binding, PAI-1 stability and protease binding in this therapeutic effect using a panel of PAI-1 mutants differing in half-life, protease binding, and Vn binding. PAI-1R binds Vn normally but does not inhibit proteases. PAI-1AK has a complete defect in Vn binding but retains full inhibitory activity, with a short half-life similar to wild-type (wt)-PAI-1. Mutant 14-lb is identical to wt-PAI-1 but with a longer half-life. PAI-1K has defective Vn binding, inhibits proteases normally, and has a long half-life. In vitro wt-PAI-1 dramatically inhibited degradation of mesangial cell ECM while the AK mutant had much less effect. Mutants 14-1b and PAI-1K, like wt-PAI-1, inhibited matrix degradation but PAI-1R failed to reverse this inhibition although PAI-1R reversed the wt-PAI-1-induced inhibition of ECM degradation in a plasmin-, time-, and dose-dependent manner. Thus the ability of PAI-1 to inhibit ECM degradation is dependent both on its antiproteinase activity and on maintaining an active conformation achieved either by Vn binding or mutation to a stable form. Administration of these PAI-1 mutants to nephritic rats confirmed the in vitro data; only PAI-1R showed therapeutic effects. PAI-1K did not bind to nephritic kidney, indicating that Vn binding is essential to the therapeutic action of PAI-1R. The ability of PAI-1R to remain bound to Vn even in a high-protease environment is very likely the key to its therapeutic efficacy. Furthermore, because both PAI-1R and 14-1b bound to the nephritic kidney in the same pattern and differ only in their ability to bind proteases, lack of protease inhibition is also keyed to PAI-1R's therapeutic action.


2021 ◽  
Vol 14 ◽  
Author(s):  
Chunlai Zhao ◽  
Wenjia Wang ◽  
Kaijing Yan ◽  
He Sun ◽  
Jihong Han ◽  
...  

: The alterations in vascular homeostasis is deeply involved in the development of numerous diseases, such as coronary heart disease, stroke, and diabetic complications. Changes in blood flow and endothelial permeability caused by vascular dysfunction are the common mechanisms for these three types of diseases. The disorders of glucose and lipid metabolism can result in changes of the energy production patterns in endothelium and surrounding cells which may consequently cause local energy metabolic disorders, oxidative stress and inflammatory responses. Traditional Chinese medicine (TCM) follows the principle of the “treatment by the syndrome differentiation”. TCM considers of that coronary heart disease, stroke and diabetes complications all as the type of “Qi deficiency and Blood stasis” syndrome, which mainly happens to the vascular system. Therefore, the common pathogenesis of these three types of diseases suggests the treatment strategy by TCM should be in a close manner and named as “treating different diseases by the same treatment”. Qishen Yiqi dripping pills is a modern Chinese herbal medicine which has been widely used for treatment of patients with coronary heart disease characterized as “Qi deficiency and blood stasis” in China. Recently, many clinical reports have demonstrated the potent therapeutic effects of Qishen Yiqi dripping pills on ischemic stroke and diabetic nephropathy. Based on these reports, we will summarize the clinical applications of Qishen Yiqi dripping pills on coronary heart disease, ischemic stroke and diabetic nephropathy, including the involved mechanisms with basic researches.


2016 ◽  
Vol 94 (12) ◽  
pp. 1249-1256 ◽  
Author(s):  
Le Zhang ◽  
Siyi He ◽  
Fan Yang ◽  
Hua Yu ◽  
Wei Xie ◽  
...  

The purpose of this study was to investigate the therapeutic effects of hyperoside (Hyp) on glomerulosclerosis in diabetic nephropathy and its underlying mechanisms. Blood glucose, kidney mass, and renal function of mice were measured. Renal morphology was observed using hematoxylin and eosin, periodic acid – Schiff’s, and Masson’s trichrome stain. Fibronectin (FN) and collagen IV (COL IV) in kidney were determined by Western blot and immunohistochemical studies. Matrix metalloproteinases (MMP)-2 and -9 and tissue inhibitors of metalloproteinase (TIMP)-1 in renal tissues were detected on both the mRNA and protein levels. miRNA expression and artificial alterations by miRNA agomir transfection were evaluated to investigate the protective mechanism of Hyp in mesangial cells. Hyp effectively improved renal function and physiologic features of db/db mice. Hyp also ameliorated glomerulosclerosis by suppressing FN, COL IV, and TIMP-1 expressions and promoting MMP-9 and MMP-2 expressions. The change in MMP-9 mRNA expression was inconsistent with that in protein levels in kidney, indicating that there was a post-transcriptional regulation. Further exploration in vitro showed that miR-21 was downregulated by Hyp, increasing expression of its target, MMP-9. These results suggest that Hyp can ameliorate glomerulosclerosis in diabetic nephropathy by downregulating miR-21 to increase expression of its target, MMP-9.


2020 ◽  
Vol 10 (11) ◽  
pp. 1846-1853
Author(s):  
Wen-Feng Zhang ◽  
Yan Yang ◽  
Xin Li ◽  
Bo Yang ◽  
Pei-Yu He ◽  
...  

Puerarin has potential therapeutic effects on diabetic nephropathy (DN), but the effectiveness as a treatment for DN and the underlying mechanism remain to be elucidated. The DN-like model induced by high glucose in vitro and the DN model induced by streptozotocin in vivo were used to observe the effect of puerarin. The results showed that puerarin can enhance the activity of HBZY-1 cells and reduce apoptosis. in vivo enzymelinked immunosorbent assay and biochemical assay showed that puerarin can improve DN symptoms. Using hematoxylin and eosin staining to stain kidney tissues confirmed that puerarin has a protective effect on DN. Furthermore, puerarin can reduce the content of collagen type IV, laminin LN, tumor necrosis factor, p38, CREB, Fos, Jun, and MMP9 in HBZY-1 cells and DN rats. In conclusion, puerarin can effectively prevent apoptosis in vitro and improve DN-like symptoms by inhibiting the p38/MAPK signaling pathway in vivo. Therefore, puerarin has the potential to treat DN.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2240-2240
Author(s):  
Nirav Dhanesha ◽  
Anil K. Chauhan

Abstract Background and objective: ADAMTS13 (A Disintegrin And Metalloprotease with Thrombospondin type I repeats-13) cleaves von Willebrand factor (VWF), a large multimeric protein that plays an important role in hemostasis and thrombosis. Severe deficiency or very low levels of ADAMTS13 in presence of external stimuli results in accumulation of thrombogenic ultra large VWF multimers (which are released from activated endothelium) known to trigger thrombotic microangiopathy. Activated endothelium/dysfunction is a prominent feature of diabetic nephropathy, and advanced diabetic glomerulopathy often exhibits thrombotic microangiopathy. Significantly reduced ADAMTS13 and increased plasma VWF levels have been found in diabetic patients with nephropathy. Although major site of ADAMTS13 synthesis is liver, ADAMTS13 is also expressed by podocytes in normal renal cortex. It remains unknown, however, whether VWF and ADAMTS13 imbalance plays a causal role in development of nephropathy in diabetic patients or rather is simply an associate marker of disease status, possibly secondary to endothelial function. We performed experiments in genetic models to determine whether ADAMTS13 and VWF axis contributes to diabetic nephropathy. Methods : Male, 8-10 weeks old wild-type (WT), Adamts13-/- and Vwf-/- mice were made diabetic by injecting multiple low doses of streptozotocin (60 mg/kg, i.p. for five consecutive days). Successful diabetes induction was tested after 2 weeks by measuring blood glucose. Mice having blood glucose levels above 300 mg/dL were included in the study. Controls were nondiabetic littermate mice treated with citrate buffer. The extent of renal injury was evaluated after 28 weeks of diabetes induction by measuring albuminuria and kidney to body weight ratio. Renal hypertrophy and extracellular matrix deposition was quantified by hematoxylin and immunostaining. PAI-1 mRNA and protein levels were measured by real time quantitative RT-PCR and ELISA. Results: Adamts13- /- diabetic mice exhibited significantly increased kidney to body weight ratio (P<0.05 vs. WT diabetic mice). Urine albuminuria, an index of renal injury was significantly elevated in Adamts13-/- diabetic mice (P<0.05 vs. WT diabetic mice). Increased renal injury in Adamts13-/- diabetic mice was concomitant with increased renal hypertrophy and extracellular matrix (ECM) deposition within glomeruli (P<0.05 vs. WT diabetic mice). Murine studies have shown that PAI-1 contributes to diabetic nephropathy by regulating TGF-beta and ECM deposition. A positive association exists between increased PAI-1 levels in glomeruli and microangiopathy in patients with diabetic nephropathy. We determined whether ADAMTS13 deficiency-induced microangiopathy in glomeruli increases PAI-1 levels. Adamts13-/- diabetic mice exhibited increased PAI-1 mRNA and protein levels (P<0.05 vs. WT diabetic mice). VWF remains the only known substrate of ADAMTS13 and increased plasma VWF levels have been associated with diabetic nephropathy. We determined the role of VWF in diabetic nephropathy. Vwf-/- diabetic mice exhibited significantly decreased kidney weight/body weight ratio, less urinary albuminuria, decreased kidney PAI-1 expression levels concomitant with improved kidney morphological changes (P<0.05 vs. WT diabetic mice). Conclusion : These findings provide experimental evidence for the first time that ADAMTS13/VWF axis potentially contributes to diabetic nephropathy, most likely by regulating PAI-1 levels. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document