scholarly journals Paeonol suppresses lipid formation and promotes lipid degradation in adipocytes

2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Ji Li ◽  
Huan Gu
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Gonzalo M. Figueroa-Torres ◽  
Jon K. Pittman ◽  
Constantinos Theodoropoulos

Abstract Background The production of microalgal biofuels, despite their sustainable and renowned potential, is not yet cost-effective compared to current conventional fuel technologies. However, the biorefinery concept increases the prospects of microalgal biomass as an economically viable feedstock suitable for the co-production of multiple biofuels along with value-added chemicals. To integrate biofuels production within the framework of a microalgae biorefinery, it is not only necessary to exploit multi-product platforms, but also to identify optimal microalgal cultivation strategies maximising the microalgal metabolites from which biofuels are obtained: starch and lipids. Whilst nutrient limitation is widely known for increasing starch and lipid formation, this cultivation strategy can greatly reduce microalgal growth. This work presents an optimisation framework combining predictive modelling and experimental methodologies to effectively simulate and predict microalgal growth dynamics and identify optimal cultivation strategies. Results Microalgal cultivation strategies for maximised starch and lipid formation were successfully established by developing a multi-parametric kinetic model suitable for the prediction of mixotrophic microalgal growth dynamics co-limited by nitrogen and phosphorus. The model’s high predictive capacity was experimentally validated against various datasets obtained from laboratory-scale cultures of Chlamydomonas reinhardtii CCAP 11/32C subject to different initial nutrient regimes. The identified model-based optimal cultivation strategies were further validated experimentally and yielded significant increases in starch (+ 270%) and lipid (+ 74%) production against a non-optimised strategy. Conclusions The optimised microalgal cultivation scenarios for maximised starch and lipids, as identified by the kinetic model presented here, highlight the benefits of exploiting modelling frameworks as optimisation tools that facilitate the development and commercialisation of microalgae-to-fuel technologies.


2021 ◽  
pp. 103316
Author(s):  
Zhen Yang ◽  
Ying Zhou ◽  
Jun-Jie Xing ◽  
Xiao-Na Guo ◽  
Ke-Xue Zhu

2018 ◽  
Vol 47 (1) ◽  
pp. 453-469 ◽  
Author(s):  
Ying Yang ◽  
Hui Luo ◽  
Can Zhou ◽  
Rongyi Zhang ◽  
Si Liu ◽  
...  

Objective This study aimed to examine regulation of capillary tubules and lipid formation in vascular endothelial cells and macrophages via extracellular vesicle-mediated microRNA (miRNA)-4306 transfer Methods Whole blood samples (12 mL) were collected from 53 patients, and miR-4306 levels in extracellular vesicles (EVs) were analyzed by reverse transcription-polymerase chain reaction. Human coronary artery vascular endothelial cells (HCAECs) and human monocyte-derived macrophages (HMDMs) were transfected with a scrambled oligonucleotide, an miR-4306 mimic, or an anti-miR-4306 inhibitor. The direct effect of miR-4306 on the target gene was analyzed by a dual-luciferase reporter assay. Results EV-contained miR-4306 released from HMDMs was significantly upregulated in coronary artery disease. Oxidized low-density lipoprotein (ox-LDL)-stimulated HMDM-derived EVs inhibited proliferation, migration, and angiogenesis abilities of HCAECs in vitro. However, ox-LDL-stimulated HCAEC-derived EVs enhanced lipid formation of HMDMs. The possible mechanism of these findings was partly due to EV-mediated miR-4306 upregulation of the Akt/nuclear factor kappa B signaling pathway. Conclusions Paracrine cellular crosstalk between HCAECs and HMDMs probably supports the pro-atherosclerotic effects of EVs under ox-LDL stress.


1991 ◽  
Vol 252 ◽  
Author(s):  
P. B. van Wachem ◽  
P. B. van Wachem ◽  
L. H. H. Olde Damink ◽  
P. J. Dijkstra ◽  
J. Feijen ◽  
...  

ABSTRACTPretreatment in tissue culture (TC) was previously found to markedly reduce the in vitro cytotoxicity of two types of crosslinked dermal sheep collagens (DSC's). This in vivo study confirms our in vitro results, in that TC-pretreatment of crosslinked DSC's resulted in the marked reduction or elimination of cytotoxic effects, such as increased cell infiltration, a deviant neutrophil-morphology, lipid formation and cell death. TC-pretreatment affected the crosslinked state of both DSC's in a different way, which could be deduced from the differences in gelatin-formation and presence of giant cells from macrophage- or fibroblast-origin. The results are explained in view of the differences in crosslinking.


2018 ◽  
Vol 314 (1) ◽  
pp. C43-C52 ◽  
Author(s):  
Meiqiang Chu ◽  
Yong Zhao ◽  
Shuai Yu ◽  
Yanan Hao ◽  
Pengfei Zhang ◽  
...  

Mammary epithelial cells are regulated by steroid hormones, growth factors, and even microRNAs. miR-15b has been found to regulate lipid metabolism in adipocytes; however, its effects on lipid metabolism in mammary epithelial cells, the cells of lipid synthesis and secretion, are as yet unknown. The main purpose of this investigation was to explore the effect of miR-15b on lipid metabolism in mammary epithelial cells, along with the underlying mechanisms. miR-15b was overexpressed or inhibited by miRNA mimics or inhibitors; subsequently, lipid formation in mammary epithelial cells, and proteins related to lipid metabolism, were investigated. Through overexpression or inhibition of miR-15b expression, the current investigation found that miR-15b downregulates lipid metabolism in mammary epithelial cells and is expressed differentially at various stages of mouse and goat mammary gland development. Inhibition of miR-15b expression increased lipid content in mammary epithelial cells through elevation of the lipid synthesis enzyme fatty acid synthetase (FASN), and overexpression of miR-15b reduced lipid content in mammary epithelial cells with decreasing levels of FASN. Moreover, the steroid hormones estradiol and progesterone decreased miR-15b expression with a subsequent increase in lipid formation in mammary epithelial cells. The expression of miR-15b was lower during lactation and negatively correlated with lipid synthesis proteins, which suggests that it may be involved in lipid synthesis and milk production. miR-15b might be a useful target for altering lipid production and milk yield.


Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 114
Author(s):  
Yang Wang ◽  
Mingxia Jin ◽  
Lichao Wang ◽  
Ailin Yu ◽  
Guai Xie ◽  
...  

In order to study the key gene in internal causes of pinewood nematode (PWN), Bursaphelenchus xylophilus, a departure from its vector beetle, Monochamus alternatus, we collected PWNs extracted from newly emerged M. alternatus and beetles 7 days after emergence. The total RNAs of the two groups of PWNs were extracted, transcriptomes sequencing was performed, and gene expression differences between the two groups of PWN were analyzed. It was found that the expression of the choline-phosphate cytidylyltransferase gene (pcyt-1) was markedly up-regulated. After inhibition of pcyt-1 expression by RNA interference, the rate of lipid degradation in PWN decreased significantly, and the motility of PWN also decreased significantly. The analysis identified that phosphatidylcholine could promote the emulsification and degradation of neutral lipid granules in PWN, which provides sufficient energy for PWN departure from M. alternatus. The up-regulation of the gene pcyt-1 is an important internal factor for PWN departure from its vector.


2010 ◽  
Vol 20 (1) ◽  
pp. 179-186 ◽  
Author(s):  
Ijung Kim ◽  
Sang-Hyoun Kim ◽  
Hang-Sik Shin ◽  
Jin-Young Jung
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document