Treatment with tumor-reactive Fab-IL-2 and Fab-staphylococcal enterotoxin A fusion proteins leads to sustained T cell activation, and long-term survival of mice with established tumors.

Author(s):  
M Søgaard ◽  
L Ohlsson ◽  
K Kristensson ◽  
A Rosendahl ◽  
A Sjoberg ◽  
...  
2020 ◽  
Author(s):  
Marcos Iglesias ◽  
Saami Khalifian ◽  
Byoung Chol Oh ◽  
Yichuan Zhang ◽  
Devin Miller ◽  
...  

AbstractCostimulation blockade-based regimens are a promising strategy for management of transplant recipients. However, maintenance immunosuppression via CTLA4-Ig monotherapy is characterized by high frequency of rejection episodes. Recent evidence suggests that inflammatory cytokines contribute to alloreactive T cell activation in a CD28-independent manner, a reasonable contributor to the limited efficacy of CTLA4-Ig. In this study, we investigated the possible synergism of a combined short-term inhibition of cytokine signaling and CD28 engagement on the modulation of rejection. Our results demonstrate that the JAK/STAT inhibitor Tofacitinib restored the immunomodulatory effect of CTLA4-Ig on mouse alloreactive T cells in presence of inflammatory cytokines. Tofacitinib exposure conferred dendritic cells with a tolerogenic phenotype reducing their cytokine secretion and costimulatory molecules expression. JAK inhibition also directly affected T cell activation. In vivo, the combination of CTLA4-Ig and Tofacitinib induced long-term survival of heart allografts and, importantly, it was equally effective when using grafts subjected to prolonged ischemia. Transplant survival correlated with a reduction in effector T cells and intragraft accumulation of regulatory T cells. Collectively, our studies demonstrate a powerful synergism between CTLA4-Ig and Tofacitinib and suggest their combined use is a promising strategy for improved management of transplanted patients.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi166-vi166
Author(s):  
Alexander Haddad ◽  
Jordan Spatz ◽  
Megan Montoya ◽  
Sara Collins ◽  
Sabraj Gill ◽  
...  

Abstract Glioblastoma (GBM) leads to severe systemic and local immunosuppression, and immunotherapies have had limited clinical success. Here, we evaluated the treatment efficacy of RLI, a superagonist of T-cell activator IL-15, delivered to tumor cells using a tumor-selective retroviral replicating vector (RRV) in the syngeneic murine SB28 and Tu2449 GBM models, which are both engineered to be poorly immunogenic with low-mutational burden and known resistance to immunotherapy, and hence more accurate biomimetic models of human GBM. RRV-RLI replicated and spread effectively in cultured murine GBM cells with robust production of functional RLI (165.4 ± 5.3 ng/mL). Stereotactic injection of RRV-RLI into pre-established intracerebral SB28 tumors significantly reduced tumor growth on bioluminescent imaging, and increased median survival compared to control mice (55 vs. 19 days, p=0.002), leading to long-term survival in 12% of treated mice. In the Tu2449 model, imaging results showed complete eradication of intracerebral tumors after RRV-RLI treatment, with long-term survival (median not reached) in > 85% of treated mice, compared to a median survival of 12.5 days in control mice (p=0.001). RRV-RLI treated tumors showed significantly increased CD8 T-cell infiltration, without altering immunosuppressive cell populations. Similarly, broad anti-tumor inflammatory changes, including increased expression of genes involved in T-cell activation and killing, were observed in the NanoString nCounter platform using a 770-gene panel representing various immune cell types. Notably, RLI was not detected in the blood of treated mice, and tumor-localized RRV-RLI gene delivery showed no adverse systemic immune effects in either model. In summary, RRV-mediated RLI immunotherapy results in immunostimulatory and pro-inflammatory changes to the tumor microenvironment and achieves a significant survival benefit in two poorly immunogenic syngeneic murine models of GBM. This tumor-localized immunomodulatory gene therapy has the potential to safely reverse the T-cell depleted immunophenotype of GBM.


2021 ◽  
Vol 22 (18) ◽  
pp. 9951
Author(s):  
Yue Lou ◽  
Junjun Wang ◽  
Peng Peng ◽  
Shicheng Wang ◽  
Ping Liu ◽  
...  

Immunotherapy has emerged as a therapeutic pillar in tumor treatment, but only a minority of patients get benefit. Overcoming the limitations of immunosuppressive environment is effective for immunotherapy. Moreover, host T cell activation and longevity within tumor are required for the long-term efficacy. In our previous study, a novel cryo-thermal therapy was developed to improve long-term survival in B16F10 melanoma and s.q. 4T1 breast cancer mouse models. We determined that cryo-thermal therapy induced Th1-dominant CD4+ T cell differentiation and the downregulation of Tregs in B16F10 model, contributing to tumor-specific and long-lasting immune protection. However, whether cryo-thermal therapy can affect the differentiation and function of T cells in a s.q. 4T1 model remains unknown. In this study, we also found that cryo-thermal therapy induced Th1-dominant differentiation of CD4+ T cells and the downregulation of effector Tregs. In particular, cryo-thermal therapy drove the fragility of Tregs and impaired their function. Furthermore, we discovered the downregulated level of serum tumor necrosis factor-α at the late stage after cryo-thermal therapy which played an important role in driving Treg fragility. Our findings revealed that cryo-thermal therapy could reprogram the suppressive environment and induce strong and durable antitumor immunity, which facilitate the development of combination strategies in immunotherapy.


2017 ◽  
Vol 218 (2) ◽  
pp. 239-248 ◽  
Author(s):  
Konstantia Angelidou ◽  
Peter W Hunt ◽  
Alan L Landay ◽  
Cara C Wilson ◽  
Benigno Rodriguez ◽  
...  

2014 ◽  
Vol 67 (2) ◽  
pp. 153-160 ◽  
Author(s):  
Lu Zheng ◽  
Babafemi Taiwo ◽  
Rajesh T. Gandhi ◽  
Peter W. Hunt ◽  
Ann C. Collier ◽  
...  

2019 ◽  
Vol 16 (4) ◽  
pp. 302-314
Author(s):  
Chinnambedu Ravichandran Swathirajan ◽  
Ramachandran Vignesh ◽  
Greer Waldrop ◽  
Uma Shanmugasundaram ◽  
Pannerselvam Nandagopal ◽  
...  

Background:Anti-viral cytokine expressions by cytotoxic T-cells and lower activation rates have been reported to correlate with suppressed HIV replication in long-term non-progressors (LTNP). Immune mechanisms underlying disease non-progression in LTNP might vary with HIV-1 subtype and geographical locations.Objective:This study evaluates cytokine expression and T-cells activation in relation to disease non-progression in LTNP.Methods:HIV-1 Subtype C infected LTNP (n=20) and progressors (n=15) were enrolled and flowcytometry assays were performed to study HIV-specific CD8 T-cells expressing IL-2, IFN-γ, TNF-α and MIP-1β against gag and env peptides. CD4+ T-cell activation was evaluated by surface expression of HLADR and CD38.Results:Proportions of cytokines studied did not differ significantly between LTNP and progressors, while contrasting correlations with disease progression markers were observed in LTNP. CD4+ T-cell activation rates were significantly lower in LTNP compared to progressors which indicate the potential role of T-cell activation rates in disease non-progression in LTNP.Conclusion:LTNP and progressors showed similar CD8+ T-cell responses, but final conclusions can be drawn only by comparing multiple immune factors in larger LTNP cohort with HIV-1 infected individuals at various levels of disease progression. A possible role of HIV-1 subtype variation and ethnic differences in addition to host-genetic and viral factors cannot be ruled out.


2019 ◽  
Vol 11 (2) ◽  
pp. 108-123
Author(s):  
Dan Tong ◽  
Li Zhang ◽  
Fei Ning ◽  
Ying Xu ◽  
Xiaoyu Hu ◽  
...  

Abstract Common γ chain cytokines are important for immune memory formation. Among them, the role of IL-2 remains to be fully explored. It has been suggested that this cytokine is critically needed in the late phase of primary CD4 T cell activation. Lack of IL-2 at this stage sets for a diminished recall response in subsequent challenges. However, as IL-2 peak production is over at this point, the source and the exact mechanism that promotes its production remain elusive. We report here that resting, previously antigen-stimulated CD4 T cells maintain a minimalist response to dendritic cells after their peak activation in vitro. This subtle activation event may be induced by DCs without overt presence of antigen and appears to be stronger if IL-2 comes from the same dendritic cells. This encounter reactivates a miniature IL-2 production and leads a gene expression profile change in these previously activated CD4 T cells. The CD4 T cells so experienced show enhanced reactivation intensity upon secondary challenges later on. Although mostly relying on in vitro evidence, our work may implicate a subtle programing for CD4 T cell survival after primary activation in vivo.


2020 ◽  
Vol 34 (5) ◽  
pp. 2056-2067
Author(s):  
Brian K. Flesner ◽  
Gary W. Wood ◽  
Pamela Gayheart‐Walsten ◽  
F. Lynn Sonderegger ◽  
Carolyn J. Henry ◽  
...  

2019 ◽  
Vol 51 ◽  
pp. e62 ◽  
Author(s):  
A. Loglio ◽  
A. Alexandrov ◽  
S.C. Uceda Renteria ◽  
C.Y.L. Tham ◽  
L. Greco ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document