Lack of defective expression of the ATM gene in sporadic breast cancer tissues and cell lines.

Author(s):  
S Kovalev ◽  
A Mateen ◽  
A I Zaika ◽  
B J O'Hea ◽  
U M Moll
2015 ◽  
Vol 7 ◽  
pp. BIC.S19079 ◽  
Author(s):  
Seyedmehdi Nourashrafeddin ◽  
Mehdi Dianatpour ◽  
Mahmoud Aarabi ◽  
Maryam Beigom Mobasheri ◽  
Golnesa Kazemi-oula ◽  
...  

Breast cancer is one of the most common causes of cancer death in women; therefore, the study of molecular aspects of breast cancer for finding new biomarkers is important. Recent studies have shown that WW domain-binding protein 2 (WBP2) is important for the oncogenic property of breast cancer. WWP2 N-terminal-like ( WBP2NL) is a testis-specific signaling protein that induces meiotic resumption and oocyte activation events. Our previous study revealed that WBP2NL gene expression is elevated in actively dividing cells and it might be associated with cellular proliferation and tumorigenic process. However, the clinical relevance and importance of WBP2NL gene in cancer has not been understood yet. Therefore, we were interested in analyzing the expression of WBP2NL gene in human breast cancer tissues and breast cancer cell lines, for the first time. We used reverse transcription-polymerase chain reaction (RT-PCR) and semi-nested RT-PCR to evaluate the expression of WBP2NL in malignant breast cancer and adjacent noncancerous tissue (ANCT) samples, as well as MCF-7 and MDA-MB-231 cell lines. The WBP2NL gene was expressed in 45 out of 50 (90%) breast cancer tissues and overexpressed in the MDA-MB-231 cell line. We suggest that WBP2NL may play roles in breast cancer activation maybe through binding to a group I WW domain protein. The elevated expression of WBP2NL gene in breast cancer and MDA-MB-231 cell line leads us to suggest that WBP2NL might be considered as a novel prognostic factor for early diagnosis of breast cancer.


2017 ◽  
Vol 1 (Supplementary 1) ◽  
pp. 0-0
Author(s):  
Maryam Rahimi ◽  
Farkhondeh Behjati ◽  
Fatemeh Moghaddam ◽  
Elahe Keyhani

2021 ◽  
Author(s):  
Jun Tian ◽  
Bei Li ◽  
Jing Qiao ◽  
Xinfeng Pang ◽  
Xiaojing Yue

Abstract Background: Programmed cell death protein 4 (PDCD4), which serves as a tumor suppressor protein, plays a important role in cell proliferation,apoptosis, cell migration and DNA-damage response.However, the exact mechanism for the deubiquitination of PDCD4 remain unclear.Methods: Western blotting was used to detect the expression of PDCD4 in the breast cancer tissues and BC cell lines. We identified the potential PDCD4 associated deubiquitinase by RNAi screening. GST-Pull down and domain-mapping analysis were used to reveal that USP13 and PDCD4 directly interact with each other.Flow cytometry was used to detect the changes of G1 to S phase. Soft agar assay was used to measure the changes of the cell proliferation efficiency.Results: The expression of PDCD4 was decreased in the breast cancer tissues and BC cell lines. USP13 as a potential PDCD4 associated deubiquitinase. USP13 physically interacted with PDCD4 and greatly increased the steady state of PDCD4 through the ubiquitin-proteasome pathway.Importantly, silencing of the USP13 facilitated cell cycle from G1 to Sphase, promoted breast tumor cells proliferation and migration through downregulation of PDCD4. Conclusions: Together, these results suggest that USP13 plays an important role in the breast tumor proliferation and migration through modulating PDCD4 stability.


2018 ◽  
Vol 48 (1) ◽  
pp. 194-207 ◽  
Author(s):  
Juan Gu ◽  
Yueping Wang ◽  
Xuedong Wang ◽  
Daoping Zhou ◽  
Xinguo Wang ◽  
...  

Background/Aims: An increasing body of evidence shows that long noncoding RNAs (lncRNAs) are involved in many different cancers. In this study, we aimed to investigate the competing endogenous RNA (ceRNA)-dependent mechanism by which the lncRNA GAS5 contributes to the development of breast cancer. Methods: A total of 68 breast cancer patients were enrolled, and breast cancer and adjacent normal tissues were collected. The human breast cancer cell lines MDA-MB-231, MDA-MB-453, BT549, SK-BR-3 and MCF-7 and human breast cell line MCF10A were utilized in this study. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and western blotting were performed to detect expression of relative factors. RNA immunoprecipitation (RIP) was used to evaluate the relationship between GAS5 and miR-23a, and a dual luciferase reporter gene assay was employed to assess the relationship between ATG3 and miR-23a. A subcutaneous xenograft nude mouse model was generated to examine the role of GAS5 and its regulatory pathway in autophagy. Results: GAS5 levels were frequently decreased in breast cancer tissues and cell lines, and its relatively low expression was closely related to a larger tumour size, advanced tumour-node-metastasis (TNM) stage and estrogen receptor-negative (ER-) breast cancer tissues. More importantly, we found that GAS5 promoted autophagy, with enhanced autophagosome formation after GAS5 overexpression. GAS5 was found to act as a microRNA sponge in a pathway that included miR-23a and its target gene ATG3. The GAS5-miR-23a-ATG3 axis significantly regulated autophagy in vivo and in vitro. Conclusions: In summary, we report that the GAS5-miR-23a-ATG3 axis can be regarded as a key regulator of autophagy pathways in breast cancer; it may constitute a promising biomarker and therapeutic target in the future.


2005 ◽  
Vol 12 (4) ◽  
pp. 839-850 ◽  
Author(s):  
P L Jeffery ◽  
R E Murray ◽  
A H Yeh ◽  
J F McNamara ◽  
R P Duncan ◽  
...  

While oestrogen, progesterone and growth factors, including growth hormone (GH), are clearly implicated in the pathogenesis of breast cancer, there is now evidence that the newly described ghrelin axis is also involved. The aims of this study were to investigate the expression of the ghrelin axis in breast cancer tissues and cell lines and to examine the effect of ghrelin on breast cancer cell proliferation in vitro. Ghrelin and its functional receptor, the growth hormone secretagogue receptor (GHSR) type 1a, were expressed in normal breast tissue and breast cancer specimens and cell lines. In contrast, the truncated GHSR type 1b isoform was exclusively expressed in breast carcinoma, suggesting that it has potential as a diagnostic marker. Ghrelin treatment significantly increases the proliferation of the MDA-MB-435 and MDA-MB-231 breast cancer cell lines in vitro. In addition, we have described the expression of a human preproghrelin isoform, exon 3-deleted preproghrelin, which encodes mature ghrelin plus a novel C-terminal peptide. Quantitative RT-PCR was used to demonstrate that this mRNA isoform is highly expressed in the MDA-MB-435 metastatic breast cancer cell line relative to the benign MCF-10A breast epithelial cell line. The unique C-terminal peptide of exon 3-deleted preproghrelin is expressed in the glandular epithelium of breast cancer tissues, with high-grade carcinoma exhibiting the strongest immunoreactivity. The data presented here suggest that components of the ghrelin axis may represent novel markers for breast cancer and potential therapeutic targets.


2020 ◽  
Author(s):  
Qiang Song ◽  
Man Huang ◽  
Guicheng Wu ◽  
Lu Dou ◽  
Wenjin Zhang ◽  
...  

Abstract Background Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) is the most sensitive technique for evaluating gene expression levels. Choosing appropriate reference genes (RGs) is critical for normalizing and evaluating changes in the expression of target genes. However, uniform and reliable RGs for breast cancer research have not been identified, limiting the value of target gene expression studies. Here, we provide a novel approach for mining RGs by using the RNA-seq dataset to identify reliable and accurate RGs that can be applied to different types of breast cancer tissues and cell lines. Methods First, we compiled the transcriptome profiling data from the TCGA database involving 1217 samples to identify novel RGs and then ten genes (SF1, TARDBP, THRAP3, QRICH1, TRA2B, SRSF3, YY1, DNAJC8, RNF10, and RHOA) with relatively stable expression levels were chosen as novel candidate RGs. Additionally, six conventional RGs (ACTB, TUBA1A, RPL13A, B2M, GAPDH, and GUSB) were also selected. To determine and validate the optimal RGs we performed qRT-PCR experiments on 87 samples from 5 types of surgically excised breast tumor specimens including HR+HER2-, HR+HER2+, HR-HER2-, HR-HER2+, breast cancer after neoadjuvant chemotherapy (NAC) and their matched para-carcinoma tissues, furthermore, we also included a benign breast tumor sample. Six biological replicates were included for each tissue. Moreover, we assessed 7 breast cancer cell lines (MCF-10A, MCF-7, T-47D, MDA-MB-231, MDA-MB-468, as well as MDA-MB-231 with either CNR2 knockdown or overexpression; 3 biological replicates for each line). Five statistical algorithms (geNorm, NormFinder, ΔCt method, BestKeeper, and ComprFinder) were used to assess the stability of expression of each RG across all breast cancer tissues and cell lines. Results Our results show that RG combinations SF1+TRA2B+THRAP3 and THRAP3+RHOA+QRICH1 showed stable expression in breast cancer tissues and cell lines, respectively, and that these two combinations displayed good interchangeability. Therefore, we propose that the above two combinations are optimal triplet RGs for breast cancer research. Conclusions In summary, we identified novel and reliable RG combinations for breast cancer research based on a public RNA-seq dataset which lays a solid foundation for accurate normalization of qRT-PCR results across different breast cancer tissues and cells.


2021 ◽  
Vol 8 ◽  
Author(s):  
Wenjie Shi ◽  
Daojun Hu ◽  
Yu Xing ◽  
Rui Zhuo ◽  
Qiufeng Lao ◽  
...  

Vacuolar protein sorting–associated protein 28 (VPS28), one of the four cytosolic proteins comprising the endosomal sorting complex required for the transport I (ESCRT-I) component, has been reported to be linked to various cancers. However, less evidence is available regarding the involvement of VPS28 in breast cancer. To this end, this study focused on exploring the function of VPS28 in breast cancer cells using the in silico analysis. VPS28 expression pattern data in breast cancer tissues were collected using the Cancer Genome Atlas (TCGA) and Clinical Proteomic Tumor Analysis Consortium (CPTAC) databases and analyzed to assess the association of VPS28 with breast cancer prognosis. The elevated VPS28 expression was found in breast cancer tissues and was associated with a poor prognosis (p < 0.001). A higher VPS28 expression indicated a short survival duration (HR = 2.43; 95% CI: 1.44–4.1; p < 0.001). The CCLE database showed that VPS28 was expressed in breast cancer cell lines. The upstream targets of VPS28 were identified using the mirDIP, starBase, and TargetScan online tools. The correlation and binding relationship between miR-491-5p and VPS28 was analyzed. VPS28 or miR-491-5p gain and loss of function experiments were performed to verify their potential effect on the biological functions of breast cancer cells. Knockdown of VPS28 was shown to suppress the biological functions and enhance the apoptosis of breast cancer cell lines. Micro RNA-491-5p, identified as a posttranscriptional regulator of VPS28, was downregulated in breast cancer tissues. In contrast to the miR-491-5p inhibitor, the miR-491-5p mimic could suppress the migration, wound healing ability, and proliferation, while accelerating apoptosis. However, co-transfection of VPS28 and miR-491-5p counteracted the effect of the miR-491-5p mimic on breast cancer cell functions. Thus, our in silico analysis demonstrates that miR-491-5p can suppress breast cancer progression by attenuating the expression of VPS28.


2020 ◽  
Author(s):  
Tieying Hou ◽  
Long Ye ◽  
Qingsong Qin ◽  
Shulin Wu

Abstract Background: Breast cancer is one of the most common cancer in the world. Emerging evidence has demonstrated the critical role of long noncoding RNAs (lncRNAs) in the development of breast cancer. In this study, we aimed to investigate the role of LINC00504 in breast cancer progression. Methods: Quantification real-time PCR was used to analyzed the expression levels of LINC00504 and miR‐140-5p in breast cancer tissues and cell lines. Cell proliferation, migration and invasion were assessed by Cell Counting Kit‐8, transwell assay and Immunofluorescence. Dual-luciferase reporter assay and RNA Immunoprecipitation assay were performed to verify the interaction between LINC00504 and miR‐140-5p. The expression levels of VEGFA, CDH1 and VIM were demonstrated by western blot assays. Result: Here, we found that LINC00504 is up regulated in breast cancer tissues and cell lines. Down regulation of LINC00504 mediated by shRNA suppressed the proliferation, migration, and invasion of breast cancer cells in vitro and in vivo. Furthermore, LINC00504 was found to competitively regulate miR‐140-5p via targeting VEGFA. Inhibition of miR‐140-5p attenuated the knockdown-LINC00504 induced inhibition of breast cancer cell proliferation and invasion.Conclusion: Taken together, our results demonstrated the mechanism of the LINC00504–miR‐140-5p–VEGFA axis in breast cancer cell proliferation and invasion and may lead to new lncRNA-based diagnostics or therapeutics for breast cancer.


Sign in / Sign up

Export Citation Format

Share Document