scholarly journals Soluble purified recombinant C2ORF40 protein inhibits tumor cell growth in vivo by decreasing telomerase activity in esophageal squamous cell carcinoma

2016 ◽  
Vol 12 (4) ◽  
pp. 2820-2824 ◽  
Author(s):  
Linwei Li ◽  
Xiaoyan Li ◽  
Wenyu Wang ◽  
Tianhui Gao ◽  
Yun Zhou ◽  
...  
2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Bin Wang ◽  
Peiyan Hua ◽  
Ruimin Wang ◽  
Jindong Li ◽  
Guangxin Zhang ◽  
...  

Abstract Objective Esophageal squamous cell carcinoma (ESCC) is featured by early metastasis and late diagnosis. MicroRNA-301 (miR-301) is known to participate in diverse cancers. Nevertheless, effects of miR-301 on ESCC remain unexplored. Thus, we aim to explore the role of miR-301 in ESCC progression. Methods Expression of miR-301 and phosphatase and tensin homologue (PTEN) in ESCC tissues and cell lines was assessed. Next, the screened cells were treated with altered miR-301 or PTEN oligonucleotide and plasmid, and then, the colony formation ability, cell viability, migration, invasion, cell cycle distribution and apoptosis of ESCC cells were assessed. Moreover, tumor growth and microvessel density (MVD) were also assessed, and the targeting relationship between miR-301 and PTEN was affirmed. Results MiR-301 was upregulated, and PTEN was downregulated in ESCC tissues and cells. KYSE30 cells and Eca109 cells were selected for functional assays. In KYSE30 cells, inhibited miR-301 or overexpressed PTEN suppressed cell malignant behaviors, and silenced PTEN eliminated the impact of miR-301 inhibition on ESCC progression. In Eca109 cells, miR-301 overexpression or PTEN inhibition promoted cell malignant behaviors, and PTEN overexpression reversed the effects of miR-301 elevation on ESCC progression. The in vivo assay revealed that miR-301 inhibition or PTEN overexpression repressed ESCC tumor growth and MVD, and miR-301 elevation or PTEN reduction had contrary effects. Moreover, PTEN was targeted by miR-301. Conclusion Taken together, results in our study revealed that miR-301 affected cell growth, metastasis and angiogenesis via regulating PTEN expression in ESCC.


Cancers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 541
Author(s):  
Nandhitha Madhusudhan ◽  
Manuela R. Pausan ◽  
Bettina Halwachs ◽  
Marija Durdević ◽  
Markus Windisch ◽  
...  

The skin microbiota plays a prominent role in health and disease; however, its contribution to skin tumorigenesis is not well understood. We comparatively assessed the microbial community compositions from excision specimens of the main human non-melanoma skin cancers, actinic keratosis (AK), squamous cell carcinoma (SCC) and basal cell carcinoma (BCC). Keratinocyte skin tumors are characterized by significantly different microbial community compositions, wherein AK and SCC are more similar to each other than to BCC. Notably, in SCC, which represents the advanced tumor entity and frequently develops from AK, overabundance of Staphylococcus aureus, a known skin pathogen, was noted. Moreover, S. aureus overabundance was significantly associated with increased human β-defensin-2 (hBD-2) expression in SCC. By challenging human SCC cell lines with S. aureus, a specific induction of hBD-2 expression and increased tumor cell growth was seen. Increased proliferation was also induced by directly challenging SCC cells with hBD-2. Together, our data indicate that a changed microbial community composition in SCC, specified by S. aureus overabundance, might promote tumor cell growth via modulation of hBD-2 expression.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xuanzi Sun ◽  
Yuchen Sun ◽  
Jing Li ◽  
Xu Zhao ◽  
Xiaobo Shi ◽  
...  

Abstract Background Radiotherapy is a major treatment for esophageal squamous cell carcinoma (ESCC). However, HPV infection related radioresistance caused poor prognosis of ESCC. The function of SOCS6, which has been shown to be a tumor suppressor in several cancers, has not been fully investigated up till now. In this manuscript, we aim to further investigate the role of SOCS6 in regulating ESCC radioresistance. Methods Fifty-seven ESCC patients were enrolled for survival analysis. SOCS6 was stably overexpressed in HPV+ ESCC and ESCC cells, and cells were treated with radiation and then subjected to colony formation assays. Expression of DNA damage repair regulating proteins were examined by Western blotting. Cell growth, cell migration and cisplatin sensitivity were then analyzed. Sphere formation assays and flow cytometry were used to investigate changes in cancer stem cell (CSC) properties. Immunofluorescent staining and confocal microscopy were used to locate SOCS6 and c-Kit. Ubiquitylation level of c-Kit were analyzed after immunoprecipitation. Then, coimmunoprecipitation (CoIP) of SOCS6 and c-Kit were performed. In vivo, xenograft animal models were treated with radiation to examine the radiosensitivity. Results SOCS6 is correlated with better prognosis in ESCC patients. Radioresistance is impaired by SOCS6 upregulation, which inhibited cell growth, migration and increased sensitivity to cisplatin. SOCS6 significantly decreased the population of CSCs expressing the surface biomarker CD271 or CD24low/CD44high and their ability of sphere formation. SOCS6 and c-Kit were collocated in the cytoplasm. Blotting of ubiquitin and CoIP experiments indicated that the mechanism was related to ubiquitylation and degradation of the receptor c-Kit. Xenograft tumor mouse model showed that SOCS6 inhibited tumor growth and promoted radiosensitivity in vivo. Conclusions Our findings suggest that SOCS6 can promote the radiosensitivity of HPV+ ESCC and ESCC cells and reduce their stemness via ubiquitylation and degradation of c-Kit. Thus, SOCS6 is a potential target for overcoming radioresistance of ESCC.


2019 ◽  
Vol 19 (8) ◽  
pp. 1021-1028 ◽  
Author(s):  
Fanghua Qiu ◽  
Lifang Liu ◽  
Yu Lin ◽  
Zetian Yang ◽  
Feng Qiu

Background:Esophageal squamous cell carcinoma (ESCC), the most prevalent histologic subtype of esophageal cancer, is an aggressive malignancy with poor prognosis and a high incidence in the East. Corilagin, an active component present in Phyllanthus niruri L., has been shown to suppress tumor growth in various cancers. However, the effects of corilagin on ESCC and the mechanisms for its tumor suppressive function remain unknown.Methods:Cell proliferation was measured by Cell Counting Kit-8 assay and colony formation assays. Annexin V/PI double-staining was performed to assess cell apoptosis. Immunofluorescence staining and western blotting were used to evaluate the protein expression. A xenograft mice model was used to assess the in vivo antitumor effects of corilagin alone or in combination with cisplatin.Results:We for the first time showed that corilagin was effectively able to inhibit ESCC cell proliferation and induce cell apoptosis. Additionally, our results validated its antitumor effects in vivo using a xenograft mouse model. Mechanistically, we found that corilagin caused significant DNA damage in ESCC cells. We found that corilagin could significantly attenuate the expression of the E3 ubiquitin ligase RING finger protein 8 (RNF8) through ubiquitin-proteasome pathway, leading to the inability of DNA damage repair response and eventually causing cell apoptosis. Furthermore, we also showed that corilagin substantially enhanced the antitumor effects of chemotherapy drug cisplatin both in vitro and in vivo.Conclusion:Our results not only provided novel and previously unrecognized evidences for corilagin-induced tumor suppression through inducing DNA damage and targeting RNF8 in ESCC, but also highlighted that corilagin might serve as an adjunctive treatment to conventional chemotherapeutic drugs in ESCC patients.


Author(s):  
Xuechao Jia ◽  
Chuntian Huang ◽  
Yamei Hu ◽  
Qiong Wu ◽  
Fangfang Liu ◽  
...  

Abstract Background Esophageal squamous cell carcinoma (ESCC) is an aggressive and lethal cancer with a low 5 year survival rate. Identification of new therapeutic targets and its inhibitors remain essential for ESCC prevention and treatment. Methods TYK2 protein levels were checked by immunohistochemistry. The function of TYK2 in cell proliferation was investigated by MTT [(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] and anchorage-independent cell growth. Computer docking, pull-down assay, surface plasmon resonance, and kinase assay were used to confirm the binding and inhibition of TYK2 by cirsiliol. Cell proliferation, western blot and patient-derived xenograft tumor model were used to determine the inhibitory effects and mechanism of cirsiliol in ESCC. Results TYK2 was overexpressed and served as an oncogene in ESCC. Cirsiliol could bind with TYK2 and inhibit its activity, thereby decreasing dimer formation and nucleus localization of signal transducer and activator of transcription 3 (STAT3). Cirsiliol could inhibit ESCC growth in vitro and in vivo. Conclusions TYK2 is a potential target in ESCC, and cirsiliol could inhibit ESCC by suppression of TYK2.


2016 ◽  
Vol 242 (1) ◽  
pp. 45-52 ◽  
Author(s):  
Guanghui Cui ◽  
Donglei Liu ◽  
Weihao Li ◽  
Yuhang Li ◽  
Youguang Liang ◽  
...  

Increasing evidence suggests that miR-194 is down-regulated in esophageal squamous cell carcinoma tumor tissue. However, the role and underlying mechanism of miR-194 in esophageal squamous cell carcinoma have not been well defined. We used DIANA, TargetScan and miRanda to perform target prediction analysis and found KDM5B is a potential target of miR-194. Based on these findings, we speculated that miR-194 might play a role in esophageal squamous cell carcinoma development and progression by regulation the expression of KDM5B. We detected the expression of miR-194 and KDM5B by quantitative real-time reverse transcription PCR (qRT-PCR) and Western blot assays, respectively, and found down-regulation of miR-194 and up-regulation of KDM5B existed in esophageal squamous cell carcinoma cell lines. By detecting proliferation, invasion and apoptosis of TE6 and TE14 cells transfected with miR-194 mimics or mimic control, miR-194 was found to inhibit proliferation and invasion and promote apoptosis of esophageal squamous cell carcinoma cells. miR-194 was further verified to regulate proliferation, apoptosis and invasion of esophageal squamous cell carcinoma cells by directly targeting KDM5B. Furthermore, animal studies were performed and showed that overexpression of miR-194 inhibited the growth of esophageal squamous cell carcinoma tumors in vivo. These results confirmed our speculation that miR-194 targets KDM5B to inhibit esophageal squamous cell carcinoma development and progression. These findings offer new clues for esophageal squamous cell carcinoma development and progression and novel potential therapeutic targets for esophageal squamous cell carcinoma.


Sign in / Sign up

Export Citation Format

Share Document