scholarly journals Leaf trait differences between 97 pairs of invasive and native plants across China: effects of identities of both the invasive and native species

NeoBiota ◽  
2022 ◽  
Vol 71 ◽  
pp. 1-22
Author(s):  
Ming-Chao Liu ◽  
Ting-Fa Dong ◽  
Wei-Wei Feng ◽  
Bo Qu ◽  
De-Liang Kong ◽  
...  

Many studies have attempted to test whether certain leaf traits are associated with invasive plants, resulting in discrepant conclusions that may be due to species-specificity. However, no effort has been made to test for effects of species identity on invasive-native comparisons. Here, we compared 20 leaf traits between 97 pairs of invasive and native plant species in seven disturbed sites along a southwest-to-northeast transect in China using phylogenetically controlled within-study meta-analyses. The invasive relative to the native species on average had significantly higher leaf nutrients concentrations, photosynthetic rates, photosynthetic nutrients- and energy-use efficiencies, leaf litter decomposition rates, and lower payback time and carbon-to-nitrogen ratios. However, these differences disappeared when comparing weakly invasive species with co-occurring natives and when comparing invasives with co-occurring widespread dominant natives. Furthermore, the magnitudes of the differences in some traits decreased or even reversed when a random subset of strongly to moderately invasive species was excluded from the species pool. Removing rare to common natives produced the same effect, while exclusion of weakly to moderately invasives and dominant to common natives enhanced the differences. Our study indicates that the results of invasive-native comparisons are species-specific, providing a possible explanation for discrepant results in previous studies, such that we may be unable to detect general patterns regarding traits promoting exotic plant invasions through multi-species comparisons.

PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0237894
Author(s):  
Amy E. Kendig ◽  
Vida J. Svahnström ◽  
Ashish Adhikari ◽  
Philip F. Harmon ◽  
S. Luke Flory

Infectious diseases and invasive species can be strong drivers of biological systems that may interact to shift plant community composition. For example, disease can modify resource competition between invasive and native species. Invasive species tend to interact with a diversity of native species, and it is unclear how native species differ in response to disease-mediated competition with invasive species. Here, we quantified the biomass responses of three native North American grass species (Dichanthelium clandestinum, Elymus virginicus, and Eragrostis spectabilis) to disease-mediated competition with the non-native invasive grass Microstegium vimineum. The foliar fungal pathogen Bipolaris gigantea has recently emerged in Microstegium populations, causing a leaf spot disease that reduces Microstegium biomass and seed production. In a greenhouse experiment, we examined the effects of B. gigantea inoculation on two components of competitive ability for each native species: growth in the absence of competition and biomass responses to increasing densities of Microstegium. Bipolaris gigantea inoculation affected each of the three native species in unique ways, by increasing (Dichanthelium), decreasing (Elymus), or not changing (Eragrostis) their growth in the absence of competition relative to mock inoculation. Bipolaris gigantea inoculation did not, however, affect Microstegium biomass or mediate the effect of Microstegium density on native plant biomass. Thus, B. gigantea had species-specific effects on native plant competition with Microstegium through species-specific biomass responses to B. gigantea inoculation, but not through modified responses to Microstegium density. Our results suggest that disease may uniquely modify competitive interactions between invasive and native plants for different native plant species.


2015 ◽  
Vol 112 (14) ◽  
pp. 4387-4392 ◽  
Author(s):  
Chris D. Thomas ◽  
G. Palmer

Plants are commonly listed as invasive species, presuming that they cause harm at both global and regional scales. Approximately 40% of all species listed as invasive within Britain are plants. However, invasive plants are rarely linked to the national or global extinction of native plant species. The possible explanation is that competitive exclusion takes place slowly and that invasive plants will eventually eliminate native species (the “time-to-exclusion hypothesis”). Using the extensive British Countryside Survey Data, we find that changes to plant occurrence and cover between 1990 and 2007 at 479 British sites do not differ between native and non-native plant species. More than 80% of the plant species that are widespread enough to be sampled are native species; hence, total cover changes have been dominated by native species (total cover increases by native species are more than nine times greater than those by non-native species). This implies that factors other than plant “invasions” are the key drivers of vegetation change. We also find that the diversity of native species is increasing in locations where the diversity of non-native species is increasing, suggesting that high diversities of native and non-native plant species are compatible with one another. We reject the time-to-exclusion hypothesis as the reason why extinctions have not been observed and suggest that non-native plant species are not a threat to floral diversity in Britain. Further research is needed in island-like environments, but we question whether it is appropriate that more than three-quarters of taxa listed globally as invasive species are plants.


2006 ◽  
Vol 28 (1) ◽  
pp. 27 ◽  
Author(s):  
A. C. Grice

Most parts of the Australian rangelands are at risk of invasion by one or more species of non-native plants. The severity of current problems varies greatly across the rangelands with more non-native plant species in more intensively settled regions, in climatic zones that have higher and more reliable rainfall, and in wetter and more fertile parts of rangeland landscapes. Although there is quantitative evidence of impacts on either particular taxonomic groups or specific ecological processes in Australian rangelands, a comprehensive picture of responses of rangeland ecosystems to plant invasions is not available. Research has been focused on invasive species that are perceived to have important effects. This is likely to down play the significance of species that have visually less dramatic influences and ignore the possibility that some species could invade and yet have negligible consequences. It is conceivable that most of the overall impact will come from a relatively small proportion of invasive species. Impacts have most commonly been assessed in terms of plant species richness or the abundance of certain groups of vertebrates to the almost complete exclusion of other faunal groups. All scientific studies of the impacts of invasive species in Australian rangelands have focused on the effects of individual invasive species although in many situations native communities are under threat from a complex of interacting weed species. Invasion by non-native species is generally associated with declines in native plant species richness, but faunal responses are more complex and individual invasions may be associated with increase, decrease and no-change scenarios for different faunal groups. Some invasive species may remain minor components of the vegetation that they invade while others completely dominate one stratum or the vegetation overall.


Author(s):  
Lohengrin A. Cavieres ◽  
◽  

Biological invasions are one the most important drivers of the current environmental changes generating important biodiversity losses. Although several hypotheses have been proposed to understand the mechanisms underpinning biological invasions, most of them relate to negative interactions among native and invasive species, where the capacity for many invasive species to reduce diversity is often attributed to a greater competitiveness. However, neighbouring species can also show facilitative interactions, where the presence of one species can facilitate another directly by improving environmental conditions or indirectly through negative effects on a third party species. This chapter reviews the scientific literature on plant invasion, seeking examples of where facilitative interactions either among native and non-native plant species or among non-native species were demonstrated. There are several examples of native species that directly facilitate a non-native species, while examples of native species having a negative effect either on a native or a non-native species that compete with a target non-native, generating a net indirect facilitative effect of the native on the target non-native, are less numerous. Direct facilitation among non-native species has been reported as part of the 'invasional meltdown' phenomenon (Chapter 8, this volume). There are cases where non-native species can have a negative effect on a native species that competes with a target non-native, generating a net indirect facilitative effect among the non-natives. Finally, a non-native species can have a direct facilitative effect on native species, which might have important implications in restoration.


2012 ◽  
Vol 5 (4) ◽  
pp. 494-505 ◽  
Author(s):  
Nicholas R. Jordan ◽  
Laura Aldrich-Wolfe ◽  
Sheri C. Huerd ◽  
Diane L. Larson ◽  
Gary Muehlbauer

AbstractDiversified grasslands that contain native plant species can produce biofuels, support sustainable grazing systems, and produce other ecosystem services. However, ecosystem service production can be disrupted by invasion of exotic perennial plants, and these plants can have soil-microbial “legacies” that may interfere with establishment and maintenance of diversified grasslands even after effective management of the invasive species. The nature of such legacies is not well understood, but may involve suppression of mutualisms between native species and soil microbes. In this study, we tested the hypotheses that legacy effects of invasive species change colonization rates, diversity, and composition of arbuscular-mycorrhizal fungi (AMF) associated with seedlings of co-occurring invasive and native grassland species. In a glasshouse, experimental soils were conditioned by cultivating three invasive grassland perennials, three native grassland perennials, and a native perennial mixture. Each was grown separately through three cycles of growth, after which we used T-RFLP analysis to characterize AMF associations of seedlings of six native perennial and six invasive perennial species grown in these soils. Legacy effects of soil conditioning by invasive species did not affect AMF richness in seedling roots, but did affect AMF colonization rates and the taxonomic composition of mycorrhizal associations in seedling roots. Moreover, native species were more heavily colonized by AMF and roots of native species had greater AMF richness (number of AMF operational taxonomic units per seedling) than did invasive species. The invasive species used to condition soil in this experiment have been shown to have legacy effects on biomass of native seedlings, reducing their growth in this and a previous similar experiment. Therefore, our results suggest that successful plant invaders can have legacies that affect soil-microbial associations of native plants and that these effects can inhibit growth of native plant species in invaded communities.


2019 ◽  
Vol 124 (5) ◽  
pp. 819-827 ◽  
Author(s):  
Xinmin Lu ◽  
Minyan He ◽  
Saichun Tang ◽  
Yuqing Wu ◽  
Xu Shao ◽  
...  

Abstract Background and Aims The strengths of biotic interactions such as herbivory are expected to decrease with increasing latitude for native species. To what extent this applies to invasive species and what the consequences of this variation are for competition among native and invasive species remain unexplored. Here, herbivore impacts on the invasive plant Alternanthera philoxeroides and its competition with the native congener A. sessilis were estimated across latitudes in China. Methods An common garden experiment spanning ten latitudinal degrees was conducted to test how herbivore impacts on A. philoxeroides and A. sessilis, and competition between them change with latitude. In addition, a field survey was conducted from 21°N to 36.8°N to test whether A. philoxeroides invasiveness changes with latitude in nature as a result of variations in herbivory. Key Results In the experiment, A. sessilis cover was significantly higher than A. philoxeroides cover when they competed in the absence of herbivores, but otherwise their cover was comparable at low latitude. However, A. philoxeroides cover was always higher on average than A. sessilis cover at middle latitude. At high latitude, only A. sessilis emerged in the second year. Herbivore abundance decreased with latitude and A. philoxeroides emerged earlier than A. sessilis at middle latitude. In the field survey, the ratio of A. philoxeroides to A. sessilis cover was hump shaped with latitude. Conclusion These results indicate that herbivory may promote A. philoxeroides invasion only at low latitude by altering the outcome of competition in favour of the invader and point to the importance of other factors, such as earlier emergence, in A. philoxeroides invasion at higher latitudes. These results suggest that the key factors promoting plant invasions might change with latitude, highlighting the importance of teasing apart the roles of multiple factors in plant invasions within a biogeographic framework.


2020 ◽  
Vol 47 (2) ◽  
pp. 100-108
Author(s):  
Michal Slezák ◽  
Štefánia Farkašovská ◽  
Richard Hrivnák

AbstractEuropean riparian forests are in general susceptible to plant invasions compared to other natural forest habitats. Their descriptive vegetation overviews with phytosociological affiliation contain detail insight into species composition patterns at various geographical scales, but quantitative assessment of the relationship between non-native plant richness and measured environmental variables is still scarce. We used two vegetation datasets of alder-dominated forests to analyse plant invasion patterns in the Pannonian and the Carpathian region of Slovakia. A large dataset of 918 vegetation plots was used at the regional scale, whereas 40 vegetation plots completed by ecological (mainly soil, climatic) predictors were used at the local scale in order to determine how they shape non-native species richness. We found significant differences (P < 0.05) between the Pannonian and the Carpathian region in the number of non-native vascular plants at both scales, with altitude being the most important predictor. Generalized Linear Models accounted for 56.6% and 59.6% of alien species richness data in the Pannonian and Carpathian region, respectively. Alien richness was affected by altitude and soil pH in the Pannonian region, but only by altitude in the Carpathian region.


2021 ◽  
Author(s):  
Xiang-Qin Li ◽  
Sai-Chun Tang ◽  
Yu-Mei Pan ◽  
Chun-Qiang Wei ◽  
Shi-Hong Lü

Abstract Aims Nitrogen (N) deposition, precipitation and their interaction affect plant invasions in temperate ecosystems with limiting N and water resources, but whether and how they affect plant invasions in subtropical native communities with abundant N and precipitation remains unclear. Methods We constructed in situ artificial communities with 12 common native plant species in a subtropical system and introduced four common invasive plant species and their native counterparts to these communities. We compared plant growth and establishment of introduced invasive species and native counterparts in communities exposed to ambient (CK), N addition (N+), increased precipitation (P+) and N addition plus increased precipitation (P+N+). We also investigated the density and aboveground biomass of communities under such conditions. Important Findings P+ alone did not enhance the performance of invasive species or native counterparts. N+ enhanced only the aboveground biomass and relative density of invasive species. P+N+ enhanced the growth and establishment performance of both invasive species and native counterparts. Most growth and establishment parameters of invasive species were greater than those of native counterparts under N+, P+ and P+N+ conditions. The density and aboveground biomass of native communities established by invasive species were significantly lower than those of native communities established by native counterparts under P+N+ conditions. These results suggest that P+ may magnify the effects of N+ on performance of invasive species in subtropical native communities where N and water are often abundant, which may help to understand the effect of global change on plant invasion in subtropical ecosystems.


Author(s):  
Lohengrin A. Cavieres

Abstract Biological invasions are one the most important drivers of the current environmental changes generating important biodiversity losses. Although several hypotheses have been proposed to understand the mechanisms underpinning biological invasions, most of them relate to negative interactions among native and invasive species, where the capacity for many invasive species to reduce diversity is often attributed to a greater competitiveness. However, neighbouring species can also show facilitative interactions, where the presence of one species can facilitate another directly by improving environmental conditions or indirectly through negative effects on a third party species. This chapter reviews the scientific literature on plant invasion, seeking examples of where facilitative interactions either among native and non-native plant species or among non-native species were demonstrated. There are several examples of native species that directly facilitate a non-native species, while examples of native species having a negative effect either on a native or a non-native species that compete with a target non-native, generating a net indirect facilitative effect of the native on the target non-native, are less numerous. Direct facilitation among non-native species has been reported as part of the 'invasional meltdown' phenomenon (Chapter 8, this volume). There are cases where non-native species can have a negative effect on a native species that competes with a target non-native, generating a net indirect facilitative effect among the non-natives. Finally, a non-native species can have a direct facilitative effect on native species, which might have important implications in restoration.


Forests ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 1075
Author(s):  
Yi-Heng Hu ◽  
Yu-Lu Zhou ◽  
Jun-Qin Gao ◽  
Xiao-Ya Zhang ◽  
Ming-Hua Song ◽  
...  

Survival competition caused by limiting nutrients is often strong between invasive and native plant species. The effects of plant invasion on nutrient uptake in plant growth remain largely unclear. Clarifying how invasive plants affect N uptake by natives will provide a better understanding on mechanisms responsible for plant invasion. A 15N-labeling experiment was conducted using two common invasive species (Alternanthera philoxeroides (Mart.) Griseb. and Wedelia trilobata (L.) Hitchc.) and their native congeners (A. sessilis (L.) DC. and W. chinensis (Osbeck.) Merr.) to examine their growth and uptake of NH4+, NO3−, and glycine when grown in monocultures and mixed cultures. All plants were grown in a greenhouse for 70 days for labelling and biomass measurements. The main factor affecting N uptake by the four species was the form of N, rather than species identity. In all of the species, the most N was taken up in the form of NH4+, followed by NO3− and glycine. The two invasive species grew faster, with stable N-uptake patterns despite more moderate uptake rates of N than the native species. Native species were strongly affected by the invasive species. The presence of invasive species caused the N-uptake rates of the natives to be reduced, with altered N-uptake patterns, but did not substantially alter their growth rates. Native species reduced their N-uptake rates but increased N-use efficiency through altering N-uptake patterns in the presence of invasive plants. Such a flexible N-uptake pattern could be an important survival strategy for native plants in competition with invaders.


Sign in / Sign up

Export Citation Format

Share Document