Feedforward control strategies for tracking performance in machine axes

2005 ◽  
Vol 18 (01) ◽  
pp. 5 ◽  
Author(s):  
Zhouhong Wei
Author(s):  
Daniel D. Frey ◽  
Kevin N. Otto

Abstract This paper introduces the concept of a process capability matrix — an ordered set of dimensionless parameters that capture information on a manufacturing system’s response to noises. The matrix captures information on the magnitude of noise, sensitivity to noise, and tolerance to variation. Algorithms and equations are presented that use the matrix to compute the yield of a manufacturing system. The method proves to be accurate on real engineering problems for which existing techniques are inadequate due to statistical correlation among product acceptance criteria. The process capability matrix also proves useful in a new type of block diagram of production systems. The block diagrams are shown to be useful in evaluating the effectiveness of feedforward control strategies for variation reduction. An electronics assembly process serves as an example of the algorithms and their use in design decision making.


2020 ◽  
Vol 12 (3) ◽  
pp. 168781402091296 ◽  
Author(s):  
Yuan-yuan Ren ◽  
Jie Wang ◽  
Xue-lian Zheng ◽  
Qi-chao Zhao ◽  
Jia-lei Ma ◽  
...  

Performance evaluation is a necessary stage in development of tracking control strategy of autonomous vehicle system, which determines the scope of application and promotes further improvement. At present, most of the tracking control strategies include performance evaluation. However, performance evaluation criteria differ from work to work, lacking comprehensive evaluation system. This article proposes a multidimensional integrated tracking control evaluation system based on subjective and objective weighting, taking into account the tracking accuracy, driving stability, and ride comfort. Through the co-simulation of CarSim and Simulink, qualitative analysis and quantitative analysis based on multidimensional evaluation system of five coupled longitudinal and lateral control strategies (lateral: pure pursuit feedforward control, dynamic-model-based optimal curvature control (dynamic feedforward control), Stanley feedback control, kinematics feedback control, and dynamic feedback control; longitudinal: the incremental proportion–integration–differentiation control) under typical operating conditions are carried out to analyze the operating range and robustness of each tracking control strategy. The results show that the Stanley tracking control strategy and the dynamic feedback tracking control strategy have a wide range of applications and robustness. The consistency of qualitative analysis results and the quantitative analysis results verify the validity and feasibility of the evaluation system.


Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 824 ◽  
Author(s):  
Jinlian Liu ◽  
Zheng Xu ◽  
Liang Xiao

This paper aims to discover the general steady-state operation characteristics, as well as improving the dynamic performance, of the modular multilevel converter (MMC)-based unified power flow controller (UPFC). To achieve this, first, we established a detailed power flow model for MMC-based UPFC containing each critical part and made qualitative and graphical analyses combining 2-dimensional operation planes and 3-dimensional spatial curve surfaces comprehensively to derive general power flow principles and offer necessary references for regulating UPFC. Furthermore, to achieve better performance, we designed a feedforward control strategy for the shunt and series converters of UPFC, both comprising two feedforward control blocks with the introduction of necessary compensating branches, and analyzed the performance in complex and time domain, respectively. The proposed power flow principles and control strategies were validated by a (power systems computer aided design) PSCAD model of 220 kV double-end system; the results reveal the MMC-based UPFC can realize the power flow principles and improve the control speed, stability, and precision of the power flow regulations under various conditions.


2014 ◽  
Vol 22 (4) ◽  
pp. 1615-1622 ◽  
Author(s):  
Manuel Beschi ◽  
Sebastian Dormido ◽  
Jose Sanchez ◽  
Antonio Visioli ◽  
Luis Jose Yebra

2016 ◽  
Vol 23 (19) ◽  
pp. 3092-3107 ◽  
Author(s):  
F Hausberg ◽  
M Plöchl ◽  
M Rupp ◽  
P Pfeffer ◽  
S Hecker

Active engine mounts significantly contribute to ensure the comfort in vehicles with emission-reducing engine technologies, e.g., cylinder-on-demand (COD), downsizing or turbochargers. To control active engine mounts, either adaptive or non-adaptive feedforward control is commonly employed. Since both approaches have previously been treated separately, this study proposes methods to connect them in terms of multiple-input-multiple-output Newton/FxLMS adaptive filters with self-trained, grid-based look-up tables. The look-up tables are incorporated as parameter-maps or parallel-maps, respectively. By combining the two feedforward control strategies, their inherent advantages, i.e., the adaptivity of adaptive filtering and the direct impact as well as the tracking behavior of map-based feedforward control, are utilized. The proposed control structures are illustrated by simulation and experimentally demonstrated in a vehicle with a V8-COD engine. While both methods significantly reduce the convergence time of the adaptive filter, the parallel implementation additionally improves the tracking behavior during fast engine run-ups.


2016 ◽  
Vol 795 ◽  
pp. 808-846 ◽  
Author(s):  
Kyle M. Bade ◽  
Ronald E. Hanson ◽  
Brandt A. Belson ◽  
Ahmed M. Naguib ◽  
Philippe Lavoie ◽  
...  

This study is motivated by controlling transient growth and subsequent bypass transition of the laminar boundary layer to turbulence. In experiments employing a model problem, an active roughness element is used to introduce steady/unsteady streak disturbances in a Blasius boundary layer. This tractable arrangement enables a systematic investigation of the evolution of the disturbances and of potential methods to control them in real time. The control strategy utilizes wall-shear-stress sensors, upstream and downstream of a plasma actuator, as inputs to a model-based controller. The controller is designed using empirical input/output data to determine the parameters of simple models, approximating the boundary layer dynamics. The models are used to tune feedforward and feedback controllers. The control effect is examined over a range of roughness-element heights, free stream velocities, feedback sensor positions, unsteady disturbance frequencies and control strategies; and is found to nearly completely cancel the steady-state disturbance at the downstream sensor location. The control of unsteady disturbances exhibits a limited bandwidth of less than 1.3 Hz. However, concurrent modelling demonstrates that substantially higher bandwidth is achievable by improving the feedforward controller and/or optimizing the feedback sensor location. Moreover, the model analysis shows that the difference in the convective time delay of the roughness- and actuator-induced disturbances over the control domain must be known with high accuracy for effective feedforward control. This poses a limitation for control effectiveness in a stochastic environment, such as in bypass transition beneath a turbulent free stream; nonetheless, feedback can remedy some of this limitation.


Author(s):  
Vasileios Markantonakis ◽  
Dimitrios Ilias Skoufoulas ◽  
Ioannis Papamichail ◽  
Markos Papageorgiou

The wide deployment of vehicle automation and communication systems (VACS) in the next decade is expected to influence traffic performance on freeways. Apart from safety and comfort, one of the goals is the alleviation of traffic congestion which is a major and challenging problem for modern societies. The paper investigates the combined use of two feedback control strategies utilizing VACS at different penetration rates, aiming to maximize throughput at bottleneck locations. The first control strategy employs mainstream traffic flow control using appropriate variable speed limits as an actuator. The second control strategy delivers appropriate lane-changing actions to selected connected vehicles using a feedback-feedforward control law. Investigations of the proposed integrated scheme have been conducted using a microscopic simulation model for a hypothetical freeway featuring a lane-drop bottleneck. The results demonstrate significant improvements even for low penetration rates of connected vehicles.


Sign in / Sign up

Export Citation Format

Share Document