Study on Misalignment-rubbing Coupling Fault of Rotor System Supported by Oil Film Force

2016 ◽  
Vol 52 (13) ◽  
pp. 79 ◽  
Author(s):  
Yang LIU
Keyword(s):  
Oil Film ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Yang Liu ◽  
Zengyuan Xue ◽  
Lei Jia ◽  
Tuo Shi ◽  
Hui Ma

For the diagnosis of looseness-rubbing coupling fault of rotor-sliding bearing system caused by bolt looseness fault, the mechanical model and finite element model of dual-disc rotor system with looseness-rubbing coupling fault are established based on the nonlinear finite element method, nonlinear oil film force, looseness stiffness model, and Hertz contact theory. With the augmented Lagrange method, contact constraint conditions are dealt with to ensure that the rotary disk and casing contact with each other meeting boundary penetrating depth within the prescribed tolerance range. And then the dynamics characteristics of the health rotor system supported by sliding bearing are studied. Combined with experimental study and simulation analysis, it is found that the looseness-rubbing coupling fault is often characterized by rubbing fault, the lower part of the time-domain fluctuated shape is denser, while the upper part is relatively loose, and multiple nested half ellipse is shown in orbit diagram. Because of the loosing stiffness and rubbing force, the phenomenon of unstable oil film is depressed. The appearance of the first- and second-order oil film oscillation phenomenon is delayed. It could be used as a theoretical basis for diagnosing looseness-rubbing coupling fault of rotor-sliding bearing system.


Author(s):  
Changli Liu ◽  
Yimin Zhang ◽  
Qing Kai Han ◽  
Bangchun Wen

An experimental rotor rig was developed to investigate nonlinear vibration characteristics of rotor bearing system with coupling fault of rub-impact and oil whirl. It was found that when the effect of oil film force on a rub-impact rotor system is comparatively weak, the rotor/stator rub-impact will cause the system to give rise to sub- and super-harmonic vibration components. In a rub-impact rotor system with oil whirl fault, super-harmonic vibration components were excited, when rotor/stator rub-impact happens before oil film whirl because of small rotor/stator clearance. When the rotor/stator clearance is comparatively large, the rub-impact happens after oil film whirl, and the effect of rub-impact on the rotor system will be very weak.


2019 ◽  
Vol 14 (4) ◽  
Author(s):  
Yang Liu ◽  
Xicheng Xin ◽  
Yulai Zhao ◽  
Shuaishuai Ming ◽  
Yaxin Ma ◽  
...  

The phenomenon of oil film oscillation and frequency locked may occur in a healthy rotor system which is supported by sliding bearing. The dynamic behavior of the rotor system with misalignment and rubbing coupling fault supported by sliding bearing is also very complex. To solve the problem of fault diagnosis in this case, a dynamical model of rotor system is proposed in this paper. The short bearing oil film force, the equivalent misalignment moment, and Hertz contact theory are applied to establish the model. For rubbing faults, the Augmented Lagrange method is used to deal with the contact constraints to ensure that the boundary penetration depth is within the specified tolerance range. Furthermore, the dynamic behavior of the faulty rotor system under different rubbing stiffness conditions is analyzed in this paper. Meanwhile, the fault signal is divided into equal-band by the wavelet basis functions to find out the fault frequency band of the rotor system. Finally, the accuracy of the simulation study is verified by measurements obtained from the faulty rotor test platform. The following findings are made in this paper. The rubbing fault is dominant in the coupling fault. With the increasing of the speed, the frequency components of the system are dominated by high frequency. The double frequency is the main fault feature frequency band. It can be seen that the rotor system moves gradually from a quasi-periodic state into chaos due to the Lyapunov exponent. At the same time, due to the effects of misalignment moment and friction force, the phenomenon of oil film instability is partially suppressed. The lagging of the first and second-order oil film oscillations occurs.


2019 ◽  
Vol 9 (17) ◽  
pp. 3628 ◽  
Author(s):  
Liang Ma ◽  
Jun Wang ◽  
Guichang Zhang

As an important part of the turbomachinery, the rotor–bearing system has been upgraded to provide a high rotating speed in order to meet the demand of high power production. With increasing demand for stability, the squeeze film damper (SFD) has been widely used in industrial machinery because it can reduce the vibration amplitude and suppress the external force. Usually, it shows inadaptability under the different working conditions where the SFD parameters didn’t change appropriately. Therefore, the reasonable choice of operational parameters of SFD is the key solution that can provide viscous damping effectively and restrain the nonlinear vibration generated by faults. In this paper, the mathematical model of a rotor-ball bearing-SFD system considering the misalignment fault and misalignment-rubbing coupling fault is built first. Then the dynamic characteristics under typical working conditions (ω = 1000 rad/s) of the faulted rotor are discussed. The vibration attenuation effects of the SFD parameters selected by using the multi-objective optimization method on the dynamic responses are analyzed. The results show that when the rotor system operates under different states, the value and the sensitivity of optimization parameters are altered. With no fault, the amplitude of fundamental frequency decrease 23%. With the misalignment fault, the amplitude of the fundamental frequency decreases by 43.4%, the amplitude of 2× fundamental frequency decreases by 27.5%, and the amplitude of 3× fundamental frequency decreases by 66.7%. With the misalignment-rubbing coupling fault, the amplitude of fundamental frequency reduces by 7.4%, the amplitude of 2× fundamental frequency drops by 51.5%, and the amplitude of 3× fundamental frequency drops by 16.8%. Overall, the feasibility of the optimization method of the variable-structured SFD operational parameters for the faulted rotor system is verified. These parametric analyses are very helpful in the development of a high-speed rotor system and provide a theoretical reference for the vibration control and optimal design of rotating machinery.


Author(s):  
Xi Chen ◽  
Xiaohua Gan ◽  
Guangming Ren

During aircraft maneuvering flights, engine's rotor-bearing systems are subjected to parametric excitations and additional inertial forces, which may cause severe vibration and abnormal operation. Based on Lagrange's principle combined with finite element modeling, the differential equations of motion for a squeeze film damped rotor-bearing system mounted on an aircraft in maneuvering flight are derived. Using Newmark–Hilber–Hughes–Taylor integration method, dynamic characteristics of the nonlinear rotor system under maneuvering flight are investigated. The factors are considered, involving mass unbalance, oil–film force, gravity, parametric excitations and additional inertial forces, and instantaneous static eccentricity of journal induced by maneuvering loads. The effects of forward velocity, radius of curvature, rotating speed, mass unbalance, oil–film clearance, and elastic support stiffness on transient responses of rotor system are discussed during diving–climbing maneuver. The results indicate that when the aircraft performs a diving–climbing maneuver in the vertical plane, the journal deviates from the center of oil–film outer ring, and the excursion direction of whirl orbit is determined by centrifugal acceleration and additional gyroscopic moment. The journal whirls asynchronously around the instantaneous static eccentricity and its magnitude is related to the maneuvering loads and the supporting stiffness. Increasing forward velocity or decreasing pitching radius, the rotor vibration will enter earlier into or withdraw later from the relatively large eccentricity. Rotating near critical speeds or excessive mass unbalances should be prevented during maneuvering flights. For large maneuver, the oil–film radial clearance needs to be enlarged properly to avoid hard contact between journal and outer ring. In addition, the stiffness of elastic support needs to be appropriately determined for damping performance. Overall, it provides a flexible approach with good expandability to predict dynamic characteristics of on-board squeeze-film damped rotor system during maneuvering flights in the design process.


Author(s):  
M Li

The vibrations of parallel geared rotor—bearing system have been intensively discussed; however, little attention has been paid to the dynamic analysis of angled bevel-geared system supported on journals. In the present work, the non-linear dynamics of a bevel-geared rotor system on oil film bearings is studied. First, the dynamic model is developed under some assumptions, such as rigid rotors, short-bearings, small teeth errors, and so forth. Then, the non-linear dynamic behaviours of both the balanced and unbalanced rotor system are analysed, respectively, in which the equilibrium points, limit cycles, their stability, and bifurcations are paid more attention. Numerical results show that in the bevel-geared rotor system under the action of non-linear oil film forces there exists a series of complex non-linear dynamic phenomena of rotor orbits, such as Hopf bifurcation, torus-doubling bifurcation, and jump phenomenon. All these features can help us to understand the dynamic characteristics of bevel-geared rotor—bearing system at design stage and during running period. Finally, some concerned problems during the investigation are also present.


2017 ◽  
Vol 88 (4) ◽  
pp. 2347-2357 ◽  
Author(s):  
Xiao-Bo Rao ◽  
Yan-Dong Chu ◽  
Ying-Xiang Chang ◽  
Jian-Gang Zhang ◽  
Ya-Ping Tian

2012 ◽  
Vol 134 (4) ◽  
Author(s):  
Yahui Cui ◽  
Zhansheng Liu ◽  
Yongliang Wang ◽  
Jianhuai Ye

To investigate the effect of oil film force on a geared rotor system, a short journal bearing model was applied to represent nonlinear oil film force. A dynamic model of the geared rotor oil journal bearing system was presented. The nonlinear gear mesh force and nonlinear oil film force were considered in the model. The nonlinear dynamic responses of the system were investigated by numerical integration method. This article shows that when the rotational speed is relatively low, the vibration of the system is mainly affected by nonlinear mesh force. With the increase of rotational speed, the influence of nonlinear oil film force also increases gradually, and the subsynchronous forward precession phenomena appear. When the speed increases to a certain value, the amplitude of the subsynchronous forward precession exceeds the amplitude of the rotational frequency, and the nonlinear mesh force is greatly affected by the nonlinear oil film force. However, the linear oil film force does not affect the nonlinear mesh force. The subsynchronous forward precession is difficult to be predicted by linear oil film force which was previously applied. This experiment is performed to validate the correctness of the dynamic model presented, and the numerical integration results of low speeds are validated by the experimental data.


Sign in / Sign up

Export Citation Format

Share Document