Transgenic approaches for pre-harvest control of mycotoxin contamination in crop plants

2009 ◽  
Vol 2 (2) ◽  
pp. 203-214 ◽  
Author(s):  
J. Cary ◽  
K. Rajasekaran ◽  
J. Yu ◽  
R. Brown ◽  
D. Bhatnagar ◽  
...  

Mycotoxins are fungal metabolites that can contaminate food and feed crops worldwide and are responsible for toxic effects in animals and humans that consume contaminated commodities. Regulatory guidelines and limits for mycotoxins have been set by the US Food and Drug Administration (FDA) and food safety agencies of other countries for both import and export of affected commodities. Mycotoxin contamination of foods and feeds can also cause serious economic hardships to producers, processors, and the consumer. Therefore, there has been a concerted effort by researchers worldwide to develop strategies for the effective control of mycotoxin contamination of crops, particularly at the pre-harvest stage. Strategies currently being utilised to combat pre-harvest mycotoxin contamination include: (1) use of non-toxigenic biocontrol strains; (2) improved agricultural practices; (3) application of agrochemicals; (4) plant breeding for resistance; and (5) genetic engineering of resistance genes into crop plants. This article highlights research on the genetic engineering of plants for resistance to invasion by mycotoxigenic fungi as well as detoxification of mycotoxins. Emphasis is placed on the most economically relevant fungi and the mycotoxins they produce. These include aflatoxins produced mainly by Aspergillus flavus and A. parasiticus, trichothecenes produced mainly by Fusarium graminearum, and to a lesser extent, fumonisins produced by F. verticillioides. Information is also presented on the use of genomics and proteomics technologies as a means of identifying genes and proteins that can be utilised in transgenic approaches to control the growth of mycotoxigenic fungi and the mycotoxins that they produce in food and feed crops.

2012 ◽  
Vol 36 (5) ◽  
pp. 483-497 ◽  
Author(s):  
Flávio Henrique Vasconcelos de Medeiros ◽  
Samuel Julio Martins ◽  
Tiago Domingues Zucchi ◽  
Itamar Soares de Melo ◽  
Luis Roberto Batista ◽  
...  

Mycotoxins are produced by the secondary metabolism of many fungi and can be found in almost 25% of the world's agricultural commodities. These compounds are toxic to humans, animals, and plants and therefore, efforts should be made to avoid mycotoxin contamination in food and feed. Besides, up to 25% of all harvested fruits and vegetables are lost due to storage molds and/or mycotoxin contamination and many methods have been applied to mitigate these issues, but most of them rely on the use of fungicides. Although chemicals are often the first defensive line against mycotoxigenic fungi, the indiscriminate use of fungicides are awakening the public perception due to their noxious effects on the environment and human/animal health. Thus, there is an increasing public pressure for a safer and eco-friendly alternative to control these organisms. In this background, biological control using microbial antagonists such as bacteria, fungi and yeasts have been shown to be a feasible substitute to reduce the use of chemical compounds. Despite of the positive findings using the biocontrol agents only a few products have been registered and are commercially available to control mycotoxin-producing fungi. This review brings about the up-to-date biological control strategies to prevent or reduce harvested commodity damages caused by storage fungi and the contamination of food and feed by mycotoxins.


2018 ◽  
Vol 11 (3) ◽  
pp. 421-436 ◽  
Author(s):  
M. Ndemera ◽  
S. Landschoot ◽  
M. De Boevre ◽  
L.K. Nyanga ◽  
S. De Saeger

Maize is susceptible to many mycotoxigenic fungi and mycotoxins, being prone to Fusarium spp. infection and subsequent mycotoxin contamination. Fumonisin B1 (FB1) is the predominant mycotoxin in Zimbabwean subsistence-grown maize and results of mycotoxin analyses indicated FB1 to be significantly higher compared to other mycotoxins. To fully elucidate maize agronomic practices influencing FB1 contamination of maize produced by Zimbabwean subsistence farming populations, an investigative field survey was conducted in the selected provinces of Mashonaland West and Manicaland. Agronomic data and associated climatic data were collected during the 2014/2015 agricultural season. A total of 158 maize samples were collected from households’ harvest, three months and six months post-harvest. Analysis and quantification of mycotoxin contamination in the maize samples was performed using a validated multi-mycotoxin analysis method with a scope of 23 mycotoxins. Maize was mainly contaminated by FB1. There was low mycotoxin co-occurrence in Zimbabwean maize, which was typically of Fusarium toxins. FB1 occurred in 23, 47 and 47% of samples at harvest, three and six months post-harvest, respectively. The corresponding means of positive samples were 609, 597 and 289 μg/kg, respectively. Regarding fumonisins, the choice of seed and fertiliser application were significant in modulating FB1 contamination. There was no significant difference in mean FB1 contamination during post-harvest maize storage. Daily temperatures were key factors influencing FB1 incidence and levels. High temperatures were associated with high FB1 contamination particularly at the flowering stage of maize. Rainfall was positively correlated with FB1 contamination. Good agricultural practices attributed to low FB1 contamination in maize pre-harvest. Post-harvest practices such as preserving seed integrity by preventing pest infestation using grain protection chemicals are important in achieving lower mycotoxin contamination and in particular, FB1, in maize grain.


2016 ◽  
Vol 2 (2) ◽  
pp. 272 ◽  
Author(s):  
Rajendran Host Antony David ◽  
Stanislaus Antony Ceasar ◽  
Krishnaraj Thirugnanasambantham ◽  
Savarimuthu Ignacimuthu

Author(s):  
Francis Imade ◽  
Edgar Mugizi Ankwasa ◽  
Hairong Geng ◽  
Sana Ullah ◽  
Tanvir Ahmad ◽  
...  

Toxins ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 214
Author(s):  
Agathe Roucou ◽  
Christophe Bergez ◽  
Benoît Méléard ◽  
Béatrice Orlando

The levels of fumonisins (FUMO)—mycotoxins produced by Fusarium verticillioides—in maize for food and feed are subject to European Union regulations. Compliance with the regulations requires the targeting of, among others, the agroclimatic factors influencing fungal contamination and FUMO production. Arvalis-Institut du végétal has created a national, multiyear database for maize, based on field survey data collected since 2003. This database contains information about agricultural practices, climatic conditions and FUMO concentrations at harvest for 738 maize fields distributed throughout French maize-growing regions. A linear mixed model approach highlights the presence of borers and the use of a late variety, high temperatures in July and October, and a water deficit during the maize cycle as creating conditions favoring maize contamination with Fusarium verticillioides. It is thus possible to target a combination of risk factors, consisting of this climatic sequence associated with agricultural practices of interest. The effects of the various possible agroclimatic combinations can be compared, grouped and classified as promoting very low to high FUMO concentrations, possibly exceeding the regulatory threshold. These findings should facilitate the creation of a national, informative and easy-to-use prevention tool for producers and agricultural cooperatives to manage the sanitary quality of their harvest.


2021 ◽  
Vol 67 (4) ◽  
pp. 3634-3648
Author(s):  
Erika Koppányné Szabó ◽  
Krisztina Takács

By 2050, 9.8 billion people are projected to live on Earth, which means that we need to double our current food production to keep pace with such a large population increase. In addition, rising greenhouse gas emissions and the associated climate change are placing a significant strain on the planet’s ability to sustain itself. However, in order to increase the quantity of proteins of plant origin, it is necessary to increase crop production areas, harvesting frequencies and the quantity of crops produced. Unfortunately, the optimization of these factors is already very close to the available maximum in the current situation. The developed cultivation systems and maximum utilization of the soil power leads to very serious environmental problems, soil destruction, loss of biodiversity and serious environmental pollution through the transport of the produced plant raw materials. This poses a serious challenge to food security and further increases the risk of hunger. There is therefore a need for agricultural practices that can lead to the cultivation of food and feed crops that have better sustainability indicators and are more resilient to climate change, which can be used to safely produce health-promoting feeds, as well as novel and value-added foods. Within this group, a particular problem is presented by the protein supply of the population, as currently about one billion people do not have adequate protein intake. However, conventional protein sources are not sufficient to meet growing protein needs. As mentioned above, food and feed proteins are based on plant proteins. In recent years, a prominent role has been played by the research into alternative proteins and the mapping of their positive and negative properties. Among alternative proteins, special attention has been paid to various yeasts, fungi, bacteria, algae, singe cell proteins (SCPs) and insects. In this paper, we focus on the presentation of algae, particularly microalgae, which are of paramount importance not only because of their significant protein content and favorable amino acid composition, but also because they are also sources of many valuable molecules, such as polyunsaturated fatty acids, pigments, antioxidants, drugs and other biologically active compounds. It is important to learn about microalgae biomass in order to be able to develop innovative health food products.


2022 ◽  
pp. 237-245
Author(s):  
Shambhu Krishan Lal ◽  
Sahil Mehta ◽  
Sudhir Kumar ◽  
Anil Kumar Singh ◽  
Madan Kumar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document