scholarly journals Determinations of the Effect of Three Natural Oils on Rhyzopertha dominica (Coleoptera: Bostrichidae) under Laboratory and Store Conditions

2020 ◽  
Vol 13 (4) ◽  
pp. 302-308
Author(s):  
Magda M.A. Sabbo
Processes ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 861 ◽  
Author(s):  
Marwa I. Mackled ◽  
Mervat EL-Hefny ◽  
May Bin-Jumah ◽  
Trandil F. Wahba ◽  
Ahmed A. Allam

Three natural oils extracted from Mentha piperita, Pinus roxburghii, and Rosa spp. were assessed in order to determine their insecticidal activity against the adults of three stored product insects: the rice weevil (Sitophilus oryzae L.), the lesser grain borer (Rhyzopertha dominica, Fabricius), and the red flour beetle (Tribolium castaneum, Herbst.). By Gas chromatography–mass spectrometry (GC/MS) analysis, the main compounds in the n-hexane oil from Rosa spp. were determined to be methyl eugenol (52.17%), phenylethyl alcohol (29.92%), diphenyl ether (7.75%), and geraniol (5.72%); in the essential oil from M. piperita, they were menthone (20.18%), 1,8-cineole (15.48%), menthyl acetate (13.13%), caryophyllene (4.82%), β-pinene (4.37%), and D-limonene (2.81%); and from the foliage of P. roxburghii, they were longifolene (19.52%), caryophyllene (9.45%), Δ-3-carene (7.01%), α-terpineol (6.75%), and γ-elemene (3.88%). S. oryzae and R. dominica were reared using sterilized wheat grains, and T. castaneum was reared on wheat flour mixed with yeast (10:1, w/w), all under laboratory conditions (27 ± 1 °C and 65% ± 5% Relative humidity (R.H). Two toxicity bioassays were used, as well as contact using thin film residues and fumigation bioassays. The results indicated that M. piperita caused a high toxicity for S. oryzae compared to other insects. High significant variations were observed between the tested M. piperita doses against the stored insects, and this natural material could be used to control insects that infect the grains. Also, the data indicated that the Rosa spp. oil had a low-toxicity effect against these insects compared to other oils. We recommend using natural oils against the stored weevils and petals, rather than the chemical agent, so as to serve human health.


2020 ◽  
Vol 17 ◽  
Author(s):  
Anisha D’Souza ◽  
Ranjita Shegokar

: In recent years, SLNs and NLCs are among the popular drug delivery systems studied for delivery of lipophilic drugs. Both systems have demonstrated several beneficial properties as an ideal drug-carrier, optimal drug-loading and good long-term stability. NLCs are getting popular due to their stability advantages and possibility to load various oil components either as an active or as a matrix. This review screens types of oils used till date in combination with solid lipid to form NLCs. These oils are broadly classified in two categories: Natural oils and Essential oils. NLCs offer range advantages in drug delivery due to the formation of imperfect matrix owing to the presence of oil. The type and percentage of oil used determines optimal drug loading and stability. Literature shows that variety of oils is used in NLCs mainly as matrix, which is from natural origin, triglycerides class. On the other hand, essential oils not only serve as a matrix but as an active. In short, oil is the key ingredient in formation of NLCs, hence needs to be selected wisely as per the performance criteria expected.


2017 ◽  
Vol 5 (1) ◽  
pp. 48-51 ◽  
Author(s):  
Kanchan Rawat ◽  
◽  
Uttam Kumar Sahoo ◽  
Nagaraj Hegde ◽  
Awadhesh Kumar ◽  
...  

The enormous use of metallic wood preservatives has caused destructive impact on environment as well as human health. Therefore realizing the urgency of switching to Environment friendly options such as natural oils are being tested for their antimicrobial properties. The present study aimed at investigating potential of Neem oil against the growth ofdecaying fungi. The ability of Neem oil to inhibit mycelia growth of Schizophyllum commune, Fusarium oxysporum, Fusarium proliferatum, Coniophora puteana and Alternaria alternata was tested at different concentrations of 0.25, 0.50, 0.75, 1.0, 2.0, 4.0, 6.0, 8.0 and 10%. Results of the study revealed Neem oil concentrations above 2% were significantly inhibitory to all the tested fungi.


Biology ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 233
Author(s):  
Ali A. Badawy ◽  
Nilly A. H. Abdelfattah ◽  
Salem S. Salem ◽  
Mohamed F. Awad ◽  
Amr Fouda

Herein, CuO-NPs were fabricated by harnessing metabolites of Aspergillus niger strain (G3-1) and characterized using UV–vis spectroscopy, XRD, TEM, SEM-EDX, FT-IR, and XPS. Spherical, crystallographic CuO-NPs were synthesized in sizes ranging from 14.0 to 47.4 nm, as indicated by TEM and XRD. EDX and XPS confirmed the presence of Cu and O with weight percentages of 62.96% and 22.93%, respectively, at varied bending energies. FT-IR spectra identified functional groups of metabolites that could act as reducing, capping, and stabilizing agents to the CuO-NPs. The insecticidal activity of CuO-NPs against wheat grain insects Sitophilus granarius and Rhyzopertha dominica was dose- and time-dependent. The mortality percentages due to NP treatment were 55–94.4% (S. granarius) and 70–90% (R. dominica). A botanical experiment was done in a randomized block design. Low CuO-NP concentration (50 ppm) caused significant increases in growth characteristics (shoot and root length, fresh and dry weight of shoot and root, and leaves number), photosynthetic pigments (total chlorophylls and carotenoids), and antioxidant enzymes of wheat plants. There was no significant change in carbohydrate or protein content. The use of CuO-NPs is a promising tool to control grain insects and enhance wheat growth performance.


2019 ◽  
Vol 29 (1) ◽  
Author(s):  
Ahlam Ahmed Alfazairy ◽  
Yasien Mohamed Gamal Zedan El-Abed ◽  
Hanan Mohamed Ramadan ◽  
Hedaya Hamza Karam

AbstractAverage yields of Mattesia spores (spore productivity) had varied from a minimum yield (0.17 × 107 spores) for Laemophloeus turcicus adult to a maximum yield (7.46 × 107 spores) for Plodia interpunctella larva. Comparatively, the highest increase in Mattesia spore yield, recorded from P. interpunctella larva (7.46 × 107 spores) over the lowest one, estimated for L. turcicus adult (0.17 × 107 spores), was nearly 44-fold. The increase in Mattesia spore yields that calculated from the other hosts (P. interpunctella pupa or moth; Galleria mellonella larva; Rhyzopertha dominica adult; Sitophilus zeamais), over that estimated for L. turcicus adult, was less than 10-fold (6–9-fold). Based on the weight of 1 g of the insect host infected with Mattesia sp., small stored grain insect hosts (e.g. L. turcicus, S. zeamais, and R. dominica) seemed to achieve Mattesia spore yields more than the larger ones (e.g. P. interpunctella). The increase in spore yields over that used for the inoculum, based on an average of 25 P. interpunctella larvae per bioassay container, was ca. 2 to 31-fold. These results revealed that the Indianmeal moth, P. interpunctella, could serve as a potential host for mass propagating the isolated entomopathogenic protozoan, Mattesia sp. Besides Mattesia larval mortality, survivors of Mattesia infection suffered deformities and noticeable undersized pupae or adults than the control ones. Also, many copulated moths (ca.46%) were unable to become separated after copulation until they had died. Bioassay of siftings, obtained from L. turcicus-protozoan-infected stock cultures, was carried out in order to emphasize the suppressive potent role of such protozoan entomopathogens in long-term storage. With the highest tested concentration of the studied siftings (10%), mortality responses due to Mattesia infection ranged from 13 to 68% at 14–169 days post-treatment. The corresponding figures for Adelina infection were 7–42%.


2021 ◽  
Vol 90 ◽  
pp. 101748
Author(s):  
Carlos R. González-Ruiz ◽  
Carmen L. Del Toro-Sánchez ◽  
Yaeel I. Cornejo-Ramírez ◽  
Francisco Rodríguez-Félix ◽  
Francisco J. Wong-Corral ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document