Nanostructured Lipid Carriers (NLCs) for drug delivery: Role of Liquid lipid (oil)

2020 ◽  
Vol 17 ◽  
Author(s):  
Anisha D’Souza ◽  
Ranjita Shegokar

: In recent years, SLNs and NLCs are among the popular drug delivery systems studied for delivery of lipophilic drugs. Both systems have demonstrated several beneficial properties as an ideal drug-carrier, optimal drug-loading and good long-term stability. NLCs are getting popular due to their stability advantages and possibility to load various oil components either as an active or as a matrix. This review screens types of oils used till date in combination with solid lipid to form NLCs. These oils are broadly classified in two categories: Natural oils and Essential oils. NLCs offer range advantages in drug delivery due to the formation of imperfect matrix owing to the presence of oil. The type and percentage of oil used determines optimal drug loading and stability. Literature shows that variety of oils is used in NLCs mainly as matrix, which is from natural origin, triglycerides class. On the other hand, essential oils not only serve as a matrix but as an active. In short, oil is the key ingredient in formation of NLCs, hence needs to be selected wisely as per the performance criteria expected.

2018 ◽  
Vol 13 (9) ◽  
pp. 1934578X1801300 ◽  
Author(s):  
Anna Rita Bilia ◽  
Vieri Piazzini ◽  
Martina Asprea ◽  
Laura Risaliti ◽  
Giulia Vanti ◽  
...  

Over the millennia, plants have represented for Humankind the main source of food, but also a vast resource to maintain health, for prophylactic properties or to cure human and animal diseases. Presently, between 65 and 80% of populations in developing countries use medicinal plants as therapeutic remedies for their primary healthcare and in Europe and USA there is an increasing demand of botanical products both on the form of food supplements and herbal medicinal products. Botanicals on the market are mainly based on traditional (infusions or decoctions), conventional (using organic solvents) and innovative (supercritical CO2 or subcritical water) extracts but there is an increasing demand of essential oils for aromatherapy. Conversely, the clinical use of many extracts is limited due to the need of repeated administrations or high doses because of low hydrophilicity and intrinsic dissolution rate(s), or physical/ chemical instability. Other limits are low absorption, poor pharmacokinetics and bioavailability, scarce biodistribution, first pass metabolism, trivial penetration and accumulation in the organs of the body. In the case of essential oils, the high volatility and instability are further limitations. Nowadays, the design and production of appropriate drug delivery systems, in particular nanosized ones (between 50 and 300 nm), have already entered into clinical use and can offer an advanced approach to optimized the therapeutic efficacy of extracts and essential oils. A successful drug carrier system should have optimal drug loading and release properties, a long shelf life, and exert a much higher therapeutic efficacy as well as lower side effects. Polymeric nanoparticles and lipid based-nanocarriers including micelles, vesicles, nanocochleates, micro- and nanoemulsions represent successful examples of extract nanoformulations overcoming these limitations. This review reports on some paradigmatic success stories of extract and EO nanoformulations with remarkable advantages over conventional formulations, which include increase of solubility, stability, permeation and bioavailability, sustained delivery. Paradigmatic examples include formulations of extracts from Vitex agnus-castus, Sylibum marianum, Phyllanthus amarus, Ginkgo biloba, Panax notoginseng, Hypericum perforatum and thyme essential oil.


Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5672
Author(s):  
Bethany Almeida ◽  
Okhil K. Nag ◽  
Katherine E. Rogers ◽  
James B. Delehanty

In nanoparticle (NP)-mediated drug delivery, liposomes are the most widely used drug carrier, and the only NP system currently approved by the FDA for clinical use, owing to their advantageous physicochemical properties and excellent biocompatibility. Recent advances in liposome technology have been focused on bioconjugation strategies to improve drug loading, targeting, and overall efficacy. In this review, we highlight recent literature reports (covering the last five years) focused on bioconjugation strategies for the enhancement of liposome-mediated drug delivery. These advances encompass the improvement of drug loading/incorporation and the specific targeting of liposomes to the site of interest/drug action. We conclude with a section highlighting the role of bioconjugation strategies in liposome systems currently being evaluated for clinical use and a forward-looking discussion of the field of liposomal drug delivery.


2018 ◽  
Vol 8 (3) ◽  
pp. 36-41
Author(s):  
Diep Do Thi Hong ◽  
Duong Le Phuoc ◽  
Hoai Nguyen Thi ◽  
Serra Pier Andrea ◽  
Rocchitta Gaia

Background: The first biosensor was constructed more than fifty years ago. It was composed of the biorecognition element and transducer. The first-generation enzyme biosensors play important role in monitoring neurotransmitter and determine small quantities of substances in complex matrices of the samples Glutamate is important biochemicals involved in energetic metabolism and neurotransmission. Therefore, biosensors requires the development a new approach exhibiting high sensibility, good reproducibility and longterm stability. The first-generation enzyme biosensors play important role in monitoring neurotransmitter and determine small quantities of substances in complex matrices of the samples. The aims of this work: To find out which concentration of polyethylenimine (PEI) exhibiting the most high sensibility, good reproducibility and long-term stability. Methods: We designed and developed glutamate biosensor using different concentration of PEI ranging from 0% to 5% at Day 1 and Day 8. Results: After Glutamate biosensors in-vitro characterization, several PEI concentrations, ranging from 0.5% to 1% seem to be the best in terms of VMAX, the KM; while PEI content ranging from 0.5% to 1% resulted stable, PEI 1% displayed an excellent stability. Conclusions: In the result, PEI 1% perfomed high sensibility, good stability and blocking interference. Furthermore, we expect to develop and characterize an implantable biosensor capable of detecting glutamate, glucose in vivo. Key words: Glutamate biosensors, PEi (Polyethylenimine) enhances glutamate oxidase, glutamate oxidase biosensors


2019 ◽  
Vol 26 (14) ◽  
pp. 2502-2513 ◽  
Author(s):  
Md. Iqbal Hassan Khan ◽  
Xingye An ◽  
Lei Dai ◽  
Hailong Li ◽  
Avik Khan ◽  
...  

The development of innovative drug delivery systems, versatile to different drug characteristics with better effectiveness and safety, has always been in high demand. Chitosan, an aminopolysaccharide, derived from natural chitin biomass, has received much attention as one of the emerging pharmaceutical excipients and drug delivery entities. Chitosan and its derivatives can be used for direct compression tablets, as disintegrant for controlled release or for improving dissolution. Chitosan has been reported for use in drug delivery system to produce drugs with enhanced muco-adhesiveness, permeation, absorption and bioavailability. Due to filmogenic and ionic properties of chitosan and its derivative(s), drug release mechanism using microsphere technology in hydrogel formulation is particularly relevant to pharmaceutical product development. This review highlights the suitability and future of chitosan in drug delivery with special attention to drug loading and release from chitosan based hydrogels. Extensive studies on the favorable non-toxicity, biocompatibility, biodegradability, solubility and molecular weight variation have made this polymer an attractive candidate for developing novel drug delivery systems including various advanced therapeutic applications such as gene delivery, DNA based drugs, organ specific drug carrier, cancer drug carrier, etc.


Pharmaceutics ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 242 ◽  
Author(s):  
Monica Terracciano ◽  
Luca De Stefano ◽  
Ilaria Rea

Diatom microalgae are the most outstanding natural source of porous silica. The diatom cell is enclosed in a three-dimensional (3-D) ordered nanopatterned silica cell wall, called frustule. The unique properties of the diatom frustule, including high specific surface area, thermal stability, biocompatibility, and tailorable surface chemistry, make diatoms really promising for biomedical applications. Moreover, they are easy to cultivate in an artificial environment and there is a large availability of diatom frustules as fossil material (diatomite) in several areas of the world. For all these reasons, diatoms are an intriguing alternative to synthetic materials for the development of low-cost drug delivery systems. This review article focuses on the possible use of diatom-derived silica as drug carrier systems. The functionalization strategies of diatom micro/nanoparticles for improving their biophysical properties, such as cellular internalization and drug loading/release kinetics, are described. In addition, the realization of hybrid diatom-based devices with advanced properties for theranostics and targeted or augmented drug delivery applications is also discussed.


2020 ◽  
Author(s):  
Chunying Liu ◽  
Xuejing Lin ◽  
Changqing Su

Extracellular vesicles (EVs) can deliver many types of drugs with their natural source material transport properties, inherent long-term blood circulation capabilities and excellent biocompatibility, and have great potential in the field of drug carrier. Modification of the content and surface of EVs according to the purpose of treatment has become a research focus to improve the drug load and the targeting of EVs. EVs can maximize the stability of the drugs, prevent immune clearance and achieve accurate delivery. Therefore, EVs can be described as \" stealth transport aircrafts \" for drugs. This chapter will respectively introduce the application of natural EVs as cell substitutes in cell therapy and engineered EVs as carriers of nucleic acids, proteins, small molecule drugs and therapeutic viral particles in disease treatment. It will also explain the drug loading and modification strategies of EVs, the source and characteristics of EVs. In addition, the commercialization progress of EVs drugs will be mentioned here, and the problems in their applications will be discussed in conjunction with the application of EVs in the treatment of COVID-19.


2012 ◽  
Vol 32 (11) ◽  
pp. 2679-2690 ◽  
Author(s):  
Hiva Baradari ◽  
Chantal Damia ◽  
Maggy Dutreih-Colas ◽  
Etienne Laborde ◽  
Nathalie Pécout ◽  
...  

Crystals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 281
Author(s):  
Nikhila Miriyala ◽  
Daniel J. Kirby ◽  
Aude Cumont ◽  
Ruoying Zhang ◽  
Baogui Shi ◽  
...  

Given the great potential of porous carrier-based drug delivery for stabilising the amorphous form of drugs and enhancing dissolution profiles, this work is focussed on the synthesis and application of carbon onion or onion-like carbon (OLC) as a porous carrier for oral amorphous drug delivery, using paracetamol (PA) and ibuprofen (IBU) as model drugs. Annealing of nanodiamonds at 1100 °C produced OLC with a diamond core that exhibited low cytotoxicity on Caco-2 cells. Solution adsorption followed by centrifugation was used for drug loading and results indicated that the initial concentration of drug in the loading solution needs to be kept below 11.5% PA and 20.7% IBU to achieve complete amorphous loading. Also, no chemical interactions between the drug and OLC could be detected, indicating the safety of loading into OLC without changing the chemical nature of the drug. Drug release was complete in the presence of sodium dodecyl sulphate (SDS) and was faster compared to the pure crystalline drug, indicating the potential of OLC as an amorphous drug carrier.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1589 ◽  
Author(s):  
Simone M. P. Meroni ◽  
Katherine E. A. Hooper ◽  
Tom Dunlop ◽  
Jenny A. Baker ◽  
David Worsley ◽  
...  

The fully printable carbon triple-mesoscopic perovskite solar cell (C-PSC) has already demonstrated good efficiency and long-term stability, opening the possibility of lab-to-fab transition. Modules based on C-PSC architecture have been reported and, at present, are achieved through the accurate registration of each of the patterned layers using screen-printing. Modules based on this approach were reported with geometric fill factor (g-FF) as high as 70%. Another approach to create the interconnects, the so-called scribing method, was reported to achieve more than 90% g-FF for architectures based on evaporated metal contacts, i.e., without a carbon counter electrode. Here, for the first time, we adopt the scribing method to selectively remove materials within a C-PSC. This approach allowed a deep and selective scribe to open an aperture from the transparent electrode through all the layers, including the blocking layer, enabling a direct contact between the electrodes in the interconnects. In this work, a systematic study of the interconnection area between cells is discussed, showing the key role of the FTO/carbon contact. Furthermore, a module on 10 × 10 cm2 substrate with the optimised design showing efficiency over 10% is also demonstrated.


2019 ◽  
Vol 11 (11) ◽  
pp. 3207-3217
Author(s):  
Enrico Sandro Colizzi ◽  
Paulien Hogeweg

Abstract Clashes between transcription and replication complexes can cause point mutations and chromosome rearrangements on heavily transcribed genes. In eukaryotic ribosomal RNA genes, the system that prevents transcription–replication conflicts also causes frequent copy number variation. Such fast mutational dynamics do not alter growth rates in yeast and are thus selectively near neutral. It was recently found that yeast regulates these mutations by means of a signaling cascade that depends on the availability of nutrients. Here, we investigate the long-term evolutionary effect of the mutational dynamics observed in yeast. We developed an in silico model of single-cell organisms whose genomes mutate more frequently when transcriptional load is larger. We show that mutations induced by high transcriptional load are beneficial when biased toward gene duplications and deletions: they decrease mutational load even though they increase the overall mutation rates. In contrast, genome stability is compromised when mutations are not biased toward gene duplications and deletions, even when mutations occur much less frequently. Taken together, our results show that the mutational dynamics observed in yeast are beneficial for the long-term stability of the genome and pave the way for a theory of evolution where genetic operators are themselves cause and outcome of the evolutionary dynamics.


Sign in / Sign up

Export Citation Format

Share Document