Quantitative RT-PCR Analysis of Polyubiquitin Gene Expression in Biomphalaria arabica after Exposure to Heat Stress and Cadmium

2000 ◽  
Vol 4 (1) ◽  
pp. 103-106 ◽  
Author(s):  
Abdulaziz A. Al-Khedhai
1996 ◽  
Vol 16 (1) ◽  
pp. 27-37 ◽  
Author(s):  
L Gabou ◽  
M Boisnard ◽  
I Gourdou ◽  
H Jammes ◽  
J-P Dulor ◽  
...  

ABSTRACT cDNA clones coding for rabbit prolactin were isolated from a pituitary library using a rat prolactin RNA probe. One cDNA contained 873 bases including the entire coding sequence of rabbit prolactin, its signal peptide and the 5′ and 3′ untranslated regions of 44 and 145 nucleotides respectively. The deduced amino acid sequence of the cloned prolactin cDNA presented a 93–78% identity with mink, porcine and human prolactins. The prolactin gene transcription was investigated by RT-PCR analysis in several organs of midlactating New Zealand White rabbits. The ectopic transcription of the prolactin gene was examined in more detail in the mammary gland. A strong PCR signal was detected in the mammary gland of virgin does and was also observed during pregnancy and at the beginning of lactation. This PCR signal was very weak in mid-lactating and absent in post-weaning mammary gland.


2016 ◽  
Vol 43 (5) ◽  
pp. 393
Author(s):  
Shiming Ge ◽  
Zhen Kang ◽  
Ying Li ◽  
Fuzhen Zhang ◽  
Yinzhu Shen ◽  
...  

By analysing the cDNA microarray of the salt tolerant mutant of wheat RH8706–49 under salinity stress, our results showed an expressed sequence tag fragment and acquired an unknown gene (designated as TaBAG) with a BAG conserved domain through electronic cloning and RT–PCR technology. The gene was registered into GenBank (No. FJ599765). After homologous alignment analysis, electronic cloning, and amplifying with RT–PCR, the other gene with a BAG conserved domain, TaBAG2, was obtained and registered into GenBank (No. GU471210). Quantitative PCR analysis demonstrated that TaBAG2 expression was induced by saline and heat stress. TaBAG gene expression under salinity stress increased remarkably but showed an insignificant response to heat stress. The adversity stress detection results showed that Arabidopsis overexpressing TaBAG and TaBAG2 exhibited an obvious salt tolerance increase. Under heat stress, Arabidopsis overexpressing TaBAG2 showed increased heat tolerance; however, the heat tolerance of Arabidopsis overexpressing TaBAG did not vary significantly under heat stress. Subcellular localisation results demonstrated that TaBAGs were mainly located in the cytoplasm and the cell nucleus. We applied fluorescence complementation and yeast two-hybrid technique to prove that TaBAG2 can obviously bond with TaHsp70 and TaCaMs. After the respective mutation of aspartic acid (D) and arginine (R) at high conservation in BAG domain of TaBAG2, the bonding interaction between TaBAG2 and TaHsp70 disappeared, indicating that the two amino acids were the key loci for the interaction between TaBAG2 and TaHsp70. Heat tolerance detection results demonstrated that the heat tolerance of Arabidopsis overexpressing and cotransfected with TaBAG2 and TaHsp70 was much higher than that of Arabidopsis overexpressing TaBAG2 and Arabidopsis overexpressing TaHSP70. This finding implies that the synergistic use of TaBAG2 and TaHSP70 can improve heat tolerance of plants.


BioTechniques ◽  
1996 ◽  
Vol 21 (1) ◽  
pp. 38-44 ◽  
Author(s):  
Tamara Hiller ◽  
Linda Snell ◽  
Peter H. Watson

2009 ◽  
Vol 27 (15_suppl) ◽  
pp. e22016-e22016
Author(s):  
F. L. Baehner ◽  
J. Anderson ◽  
C. Millward ◽  
C. Sangli ◽  
C. Quale ◽  
...  

e22016 Background: Tumor gene expression analysis using the Recurrence Score (RS) assay is frequently used in ER+ breast cancer. Manual microdissection is performed in cases where biopsy cavities (BxC) are present in the submitted specimen. The objective of this was to characterize by quantitative RT-PCR the impact of BxC on 21 gene expression profiles and the RS. Methods: 48 (15 well, 18 moderate, and 15 poorly differentiated) breast cancers were evaluated for gene expression differences between whole sections (WS; containing BxC) and enriched tumor (ET; BxC excluded). Standardized quantitative RT-PCR analysis for the 21 Oncotype DX genes was performed; reference normalized gene expression measurements ranged from 0 to 15, where each 1-unit reflects an approximate 2-fold change in RNA. Analyses of individual genes and the RS were performed on the entire sample set and stratified by tumor grade. Correlation analyses used Pearson's R, concordance analysis used Lin's sample concordance and paired t- tests to characterize differences. Results: There were statistically significant differences in reference normalized gene expression between ET and WS in 6 genes: BAG1 (ET-WS: 0.13 units, p=0.0025), CD68 (ET-WS: -0.64 units, p<0.0001), ER (ET-WS: 0.29 units, p=0.0012), GSTM1 (ET-WS: 0.18 units p=0.0025), STK15 (ET-WS: -0.18 units, p=0.0041) and STMY3 (ET-WS: 0.62 units, p<0.0001). Expression of the macrophage marker CD68 was higher and expression of ER was lower in WS containing BxC. The correlation (0.95) and concordance (0.92) were generally high between WS and ET for RS overall however among moderately differentially tumors, there was a statistically significant mean increase in RS for WS of 3.3 units (p = 0.0012) while among poorly differentiated tumors there was a trend toward a statistically significant decrease in RS for WS of 2.2 units (p=0.0569). Conclusions: Histologic identification of invasive carcinoma and exclusion of BxC is essential for precise RS assessment. Inclusion of BxC in breast cancer specimens is associated with significant changes in the expression of individual genes and impacts the RS. Removal of BxC from breast cancer specimens assessed for gene expression levels is warranted. [Table: see text]


Sign in / Sign up

Export Citation Format

Share Document