scholarly journals Effect of γ irradiation on the antibacterial activity of poly lactic acid films encapsulated with essential oils against some common food borne pathogens

2020 ◽  
Vol 5 (4) ◽  
pp. 715-733
Author(s):  
Saber Ibrahim ◽  
◽  
Amany Badr El-Deen Abd El-Aziz ◽  
Hanan Hassan Abdel-Khalek ◽  
2018 ◽  
Vol 101 (3) ◽  
pp. 1930-1942 ◽  
Author(s):  
Jingpeng Yang ◽  
Jing Wang ◽  
Kun Yang ◽  
Miaomiao Liu ◽  
Yiman Qi ◽  
...  

2021 ◽  
pp. 096739112110206
Author(s):  
Fika Fauzi ◽  
Muhammad Miqdam Musawwa ◽  
Habibi Hidayat ◽  
Ahmad Kusumaatmaja ◽  
Wipsar Sunu Brams Dwandaru

Recently, antibacterial coatings based on graphene oxide (GO) nanocomposites have attracted many studies around the world. The use of polymers as the matrices of GO nanofillers in the nanocomposites has been explored to produce efficient coatings against bacteria. One of the most prospective applications is the incorporation of GO into biocompatible polymers, which can produce antibacterial coatings. Here, recent progresses on the antibacterial coatings of nanocomposites based on biocompatible polymers and GO are reviewed. The effect of GO filler concentrations, biocide materials, and biocompatibility are discussed to find the most efficient antibacterial activity and biocompatibility of nanocomposites. Among biocompatible polymers, chitosan (Cs), poly vinyl alcohol (PVA), and poly lactic acid (PLA) are the most popular matrices used for the nanocomposites. This review also elaborates challenges in the use of other biocompatible polymers. Future works on biocompatible antibacterial coatings should be conducted by considering the concentration of GO nanofillers or adding other materials such as essential oils to suppress the toxicity toward functional cells.


2012 ◽  
Vol 28 (1) ◽  
pp. 45-47 ◽  
Author(s):  
M A Morhsed ◽  
AA Bashir ◽  
M H K Khan ◽  
M K Alam

The objective of this study was to determine the more efficient antibacterial activity of chitosan among irradiated and nonirradiated form. Chitin was isolated from shrimp and then converted into chitosan. The initial molecular weight of chitosan was 1.6 X 106 Da and after step by step pretreatments using alkali, acid and H2O2, the final molecular weight was found to be reduced to 2.7 X 104 Da and the degree of deacetylation (DD) was 70%. Chemical treatments deproteinated and decalcified the chitin. Chitosan, the deacetylated form of chitin, was dissolved in lactic acid and then irradiated to perform antimicrobial activity. To conduct the experiment, seven different strains of bacteria were isolated from spoiled orange and it was found that chitosan was more effective to inhibit the growth of these bacteria. The more efficient result was found with irradiated chitosan than the non-irradiated one and the efficiency was consistently along with the increasing   of the radiation dose. The best antimicrobial activity was observed with 32 kGy. DOI: http://dx.doi.org/10.3329/bjm.v28i1.11809 Bangladesh J Microbiol, Volume 28, Number 1, June 2011, pp 45-47


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2582
Author(s):  
Giulia Milanesi ◽  
Barbara Vigani ◽  
Silvia Rossi ◽  
Giuseppina Sandri ◽  
Elisa Mele

Chronic skin wounds are characterised by a non-healing process that makes necessary the application of wound dressings on the damaged area to promote and facilitate the recovery of skin’s physiological integrity. The aim of the present work is to develop a bioactive dressing that, once applied on the injured tissue, would exert antibacterial activity and promote adhesion and proliferation of fibroblasts. Nanofibres consisting of poly(lactic acid) (PLA) and essential oils (EOs) were electrospun and coated with a medium molecular weight chitosan (CS). Black pepper essential oil (BP-EO) or limonene (L), well-known for their antibacterial properties, were added to the PLA/acetone solution before electrospinning; phase separation phenomena occurred due to the poor solubility of the EOs in the PLA solution and led to fibres having surface nano-pores. The porous electrospun fibres were coated with CS to produce hydrophilic membranes that were easy to handle, biocompatible, and suited to promote cellular proliferation. The fibrous scaffolds were tested in terms of mechanical resistance, wettability, antibacterial activity, in-vitro cytotoxicity, and ability to promote fibroblasts’ adhesion and proliferation. The results obtained proved that the CS coating improved the hydrophilicity of the fibrous mats, enhanced EO’s antibacterial potential, and promoted cell adhesion and proliferation.


2017 ◽  
Vol 38 (1) ◽  
Author(s):  
Asma Jayari ◽  
Nariman El Abed ◽  
Ahlem Jouini ◽  
Osama Mohammed Saed Abdul‐Wahab ◽  
Abderrazak Maaroufi ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2124
Author(s):  
Giulia Vanti ◽  
Ekaterina-Michaela Tomou ◽  
Dejan Stojković ◽  
Ana Ćirić ◽  
Anna Rita Bilia ◽  
...  

Food poisoning is a common cause of illness and death in developing countries. Essential oils (EOs) could be effective and safe natural preservatives to prevent and control bacterial contamination of foods. However, their high sensitivity and strong flavor limit their application and biological effectiveness. The aim of this study was firstly the chemical analysis and the antimicrobial evaluation of the EOs of Origanum onites L. and Satureja thymbra L. obtained from Symi island (Greece), and, secondly, the formulation of propylene glycol-nanovesicles loaded with these EOs to improve their antimicrobial properties. The EOs were analyzed by GC-MS and their chemical contents are presented herein. Different nanovesicles were formulated with small average sizes, high homogeneity, and optimal ζ-potential. Microscopic observation confirmed their small and spherical shape. Antibacterial and antifungal activities of the formulated EOs were evaluated against food-borne pathogens and spoilage microorganisms compared to pure EOs. Propylene glycol-nanovesicles loaded with O. onites EO were found to be the most active formulation against all tested strains. Additionally, in vitro studies on the HaCaT cell line showed that nanovesicles encapsulated with EOs had no toxic effect. The present study revealed that both EOs can be used as alternative sanitizers and preservatives in the food industry, and that their formulation in nanovesicles can provide a suitable approach as food-grade delivery system.


2016 ◽  
Vol 10 (30) ◽  
pp. 1140-1147 ◽  
Author(s):  
Tatsinkou Fossi Bertrand ◽  
Anyangwe Irene ◽  
Tavea Frederic ◽  
Ebong Lucas Kome ◽  
Akenji Nkuo Theresa

Sign in / Sign up

Export Citation Format

Share Document