scholarly journals The stability of contact discontinuity for compressible planar magnetohydrodynamics

2017 ◽  
Vol 10 (4) ◽  
pp. 1235-1253 ◽  
Author(s):  
Haiyan Yin ◽  
2014 ◽  
Vol 577 ◽  
pp. 749-753 ◽  
Author(s):  
Li Jun Hu ◽  
Li Yuan

HLLC is a monotonous high resolution scheme, which can capture shock, contact discontinuity and rarefaction wave accurately. But when we use it to calculate the multidimensional problem, the phenomenon of shock instability will appear near the strong shock. Compared with the HLLC, the FORCE scheme can present a good stability near the strong shock, and the dissipation is lower than HLL. This paper analyzes the stability of HLLC and FORCE, and proposes a hybrid scheme which can not only present good stability but also retain the high resolution of HLLC.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Yujin Liu ◽  
Wenhua Sun

The generalized Riemann problem for a simplified model of one-dimensional ideal gas in magnetogasdynamics in a neighborhood of the origin(t>0)in the(x,t)plane is considered. According to the different cases of the corresponding Riemann solutions, we construct the perturbed solutions uniquely with the characteristic method. We find that, for some case, the contact discontinuity appears after perturbation while there is no contact discontinuity of the corresponding Riemann solution. For most cases, the Riemann solutions are stable and the perturbation can not affect the corresponding Riemann solutions. While, for some few cases, the forward (backward) rarefaction wave can be transformed into the forward (backward) shock wave which shows that the Riemann solutions are unstable under such local small perturbations of the Riemann initial data.


Author(s):  
Yu Zhang ◽  
Yanyan Zhang

The Riemann problem for the two-dimensional steady pressureless isentropic relativistic Euler equations with delta initial data is studied. First, the perturbed Riemann problem with three pieces constant initial data is solved. Then, via discussing the limits of solutions to the perturbed Riemann problem, the global solutions of Riemann problem with delta initial data are completely constructed under the stability theory of weak solutions. Interestingly, the delta contact discontinuity is found in the Riemann solutions of the two-dimensional steady pressureless isentropic relativistic Euler equations with delta initial data.


2020 ◽  
Author(s):  
Takayuki Umeda ◽  
Naru Tsujine ◽  
Yasuhiro Nariyuki

<p>The stability of contact discontinuities formed by the relaxation of two Maxwellian plasmas with different number densities but the same plasma thermal pressure is studied by means of a one-dimensional electrostatic full-Vlasov simulation. Our simulation runs with various combinations of ion-to-electron ratios of the high-density and low-density regions showed that transition layers of density and temperature without jump in the plasma thermal pressure are obtained when the electron temperatures in the high-density and low-density regions are almost equal to each other. However, the stable structure of the contact discontinuity with a sharp transition layer on the Debye scale is not maintained. It is suggested that non-Maxwellian velocity distributions are necessary for the stable structure of contact discontinuities. A direct comparison between full- and hybrid-Vlasov simulations is also made. </p>


1982 ◽  
Vol 99 ◽  
pp. 605-613
Author(s):  
P. S. Conti

Conti: One of the main conclusions of the Wolf-Rayet symposium in Buenos Aires was that Wolf-Rayet stars are evolutionary products of massive objects. Some questions:–Do hot helium-rich stars, that are not Wolf-Rayet stars, exist?–What about the stability of helium rich stars of large mass? We know a helium rich star of ∼40 MO. Has the stability something to do with the wind?–Ring nebulae and bubbles : this seems to be a much more common phenomenon than we thought of some years age.–What is the origin of the subtypes? This is important to find a possible matching of scenarios to subtypes.


1999 ◽  
Vol 173 ◽  
pp. 309-314 ◽  
Author(s):  
T. Fukushima

AbstractBy using the stability condition and general formulas developed by Fukushima (1998 = Paper I) we discovered that, just as in the case of the explicit symmetric multistep methods (Quinlan and Tremaine, 1990), when integrating orbital motions of celestial bodies, the implicit symmetric multistep methods used in the predictor-corrector manner lead to integration errors in position which grow linearly with the integration time if the stepsizes adopted are sufficiently small and if the number of corrections is sufficiently large, say two or three. We confirmed also that the symmetric methods (explicit or implicit) would produce the stepsize-dependent instabilities/resonances, which was discovered by A. Toomre in 1991 and confirmed by G.D. Quinlan for some high order explicit methods. Although the implicit methods require twice or more computational time for the same stepsize than the explicit symmetric ones do, they seem to be preferable since they reduce these undesirable features significantly.


Author(s):  
Godfrey C. Hoskins ◽  
V. Williams ◽  
V. Allison

The method demonstrated is an adaptation of a proven procedure for accurately determining the magnification of light photomicrographs. Because of the stability of modern electrical lenses, the method is shown to be directly applicable for providing precise reproducibility of magnification in various models of electron microscopes.A readily recognizable area of a carbon replica of a crossed-line diffraction grating is used as a standard. The same area of the standard was photographed in Phillips EM 200, Hitachi HU-11B2, and RCA EMU 3F electron microscopes at taps representative of the range of magnification of each. Negatives from one microscope were selected as guides and printed at convenient magnifications; then negatives from each of the other microscopes were projected to register with these prints. By deferring measurement to the print rather than comparing negatives, correspondence of magnification of the specimen in the three microscopes could be brought to within 2%.


Author(s):  
E. R. Kimmel ◽  
H. L. Anthony ◽  
W. Scheithauer

The strengthening effect at high temperature produced by a dispersed oxide phase in a metal matrix is seemingly dependent on at least two major contributors: oxide particle size and spatial distribution, and stability of the worked microstructure. These two are strongly interrelated. The stability of the microstructure is produced by polygonization of the worked structure forming low angle cell boundaries which become anchored by the dispersed oxide particles. The effect of the particles on strength is therefore twofold, in that they stabilize the worked microstructure and also hinder dislocation motion during loading.


Author(s):  
Mihir Parikh

It is well known that the resolution of bio-molecules in a high resolution electron microscope depends not just on the physical resolving power of the instrument, but also on the stability of these molecules under the electron beam. Experimentally, the damage to the bio-molecules is commo ly monitored by the decrease in the intensity of the diffraction pattern, or more quantitatively by the decrease in the peaks of an energy loss spectrum. In the latter case the exposure, EC, to decrease the peak intensity from IO to I’O can be related to the molecular dissociation cross-section, σD, by EC = ℓn(IO /I’O) /ℓD. Qu ntitative data on damage cross-sections are just being reported, However, the microscopist needs to know the explicit dependence of damage on: (1) the molecular properties, (2) the density and characteristics of the molecular film and that of the support film, if any, (3) the temperature of the molecular film and (4) certain characteristics of the electron microscope used


Sign in / Sign up

Export Citation Format

Share Document