scholarly journals Research on the control problem of actuator anti-saturation of supercavitating vehicle

2021 ◽  
Vol 19 (1) ◽  
pp. 394-419
Author(s):  
Tao Bai ◽  
◽  
Junkai Song

<abstract> <p>In the theoretical controller design of the High-Speed Supercavitating Vehicle (HSSV), there will always be the problem that the physical saturation limit has to be exceeded by the motion range of the actuator to satisfy the requirements of stable motion of the supercavitating vehicle. This paper proposes a solution which could satisfy the requirements of stable motion of the vehicle without saturation of the actuator. First of all, the rotation range of the actuator and the motion performance of the vehicle with robust controller are analyzed under the condition where saturation is neglected. Then, according to the analysis conclusion, the controller is improved by using linear active disturbance rejection control (LADRC) method, which provides the additional control component to reduce the rotation angle and rotation speed of the actuator. Finally, the simulation proves that the solution could realize the stable motion of vehicle without saturation of actuator.</p> </abstract>

Author(s):  
Zhengrong Chu ◽  
Christine Wu ◽  
Nariman Sepehri

In this article, a new automated steering control method is presented for vehicle lane keeping. This method is a combination between the linear active disturbance rejection control and the quantitative feedback theory. The structure of the steering controller is first determined based on the linear active disturbance rejection control, then the controller is tuned in the framework of the quantitative feedback theory to meet the prescribed design specifications on sensitivity and closed-loop stability. The parameter uncertainties of the vehicle system are considered at the tuning stage. The proposed steering controller is simulated and tested on a scale vehicle. Both the simulation and experimental results demonstrate that the scale vehicle controlled by the proposed controller is able to perform the lane keeping. In the experiments, the lateral offset between the scale vehicle and the road centerline is regulated within the acceptable ranges of ±0.03 m during straight lane keeping and ±0.15 m during curved lane keeping. The proposed controller is easy to be implemented and is simple without requiring complex calculations and measurements of vehicle states. Simulations also show that the control method can be implemented on a full-scale vehicle.


2009 ◽  
Vol 147-149 ◽  
pp. 302-307 ◽  
Author(s):  
Arkadiusz Mystkowski ◽  
Zdzisław Gosiewski

An optimal robust vibration control of a rotor supported magnetically over a wide angular speed range is presented in the paper. The laboratory stand with the high speed rotor (max. 24000 rpm) was designed. The wide bandwidth controller with required gain, which is necessary to stabilize the structurally unstable and active magnetic bearing system was computed. For controller design, the weighting functions putted on the input and output signals were chosen. For control design, the dynamics of the rotor and uncertain parameters were considered. The optimized control system by minimization of the H norm putted on transient process of the system was presented. The robust controller was designed with considered asymmetrically magnetic bearings, signal limits and power amplifiers dynamic. The success of the robust control is demonstrated through computer simulations and experimental results. Matlab-Simulink was used for the numerical simulation. The experimental results show the effectiveness of the control system as good vibrations reducing and robustness of the designed controller in all dynamic states.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
John Cortés-Romero ◽  
Alberto Luviano-Juárez ◽  
Hebertt Sira-Ramírez

The problem of active disturbance rejection control of induction motors is tackled by means of a generalized PI observer based discrete-time control, using the delta operator approach as the methodology of analyzing the sampled time process. In this scheme, model uncertainties and external disturbances are included in a general additive disturbance input which is to be online estimated and subsequently rejected via the controller actions. The observer carries out the disturbance estimation, thus reducing the complexity of the controller design. The controller efficiency is tested via some experimental results, performing a trajectory tracking task under load variations.


2020 ◽  
Vol 142 (9) ◽  
Author(s):  
Mario Ramírez-Neria ◽  
Rafal Madonski ◽  
Sally Shao ◽  
Zhiqiang Gao

Abstract In this work, the problem of trajectory tracking in uncertain underactuated systems is considered. To solve it, a combination of differential flatness and active disturbance rejection control (ADRC) is proposed. The controller design is synthesized in the absence of detailed knowledge of the system model and focuses on dealing with over-amplification of measurement noise, typically seen in conventional single high-gain observer-centered control approaches. The introduced solution is based on fully utilizing the information already available about the governed system, without the necessity for additional measurement devices. To be easily implementable, it is expressed in an industry familiar error-based form with a straightforward tuning method. Through experimental verification, the proposed approach is shown to enhance the disturbance-rejection capabilities of the standard ADRC structure and reduce its sensitivity to measurement noise, thus increasing its practical appeal.


Author(s):  
Jian Yang ◽  
Xiju Zong ◽  
Zhenzhen Chen ◽  
Shuying Yang

In this paper, a output feedback controller based on an infinite dimensional disturbance observer and a state feedback controller based on backstepping method are proposed to solve the synchronous control problem of network anti-stable wave equation with time-varying disturbance at the boundary. One agent in the network wave equation as the virtual leader, and all remaining agents need to track the status of the virtual leader incrementally. Here, the design of synchronous controller is divided into three parts. Firstly, backstepping method is used to design a set of controllers that makes all the systems stable. Secondly, infinite dimensional disturbance observers based on the idea of the active disturbance rejection control (ADRC) technology are used to estimate the disturbance. Finally, the synchronization controllers are designed, and the error between the following system and the virtual leader system converges to 0 in the appropriate sense. The applicability of the closed-loop system is analyzed and proved. The simulation results show the effectiveness of the controller design.


Sign in / Sign up

Export Citation Format

Share Document