EWM-based design method for distortional buckling of cold-formed thin-walled lipped channel sections with holes

2022 ◽  
Vol 19 (1) ◽  
pp. 972-996
Author(s):  
Xingyou Yao ◽  

<abstract> <p>The distortional buckling is easy to occur for the cold-formed steel (CFS) lipped channel sections with holes. There is no design provision about effective width method (EWM) to predict the distortional buckling strength of CFS lipped channel sections with holes in China. His aim of this paper is to present an proposal of effective width method for the distortional buckling strength of CFS lipped channel sections with holes based on theoretical and numerical analysis on the partially stiffened element and CFS lipped channel section with holes. Firstly, the prediction methods for the distortional buckling stress and distortional buckling coefficients of CFS lipped channel sections with holes were developed based on the energy method and simplified rotation restrained stiffness. The accuracy of the proposed method for distortional buckling stress was verified by using the finite element method. Then the modified EWM was proposed to calculate the distortional buckling strength and the capacity of the interaction buckling of CFS lipped channel sections with holes based on the proposal of distortional buckling coefficient. Finally, comparisons on ultimate capacities of CFS lipped channel sections with holes of the calculated results by using the modified effective width method with 347 experimental results and 1598 numerical results indicated that the proposed EWM is reasonable and has a high accuracy and reliability for predicting the ultimate capacities of CFS lipped channel section with holes. Meanwhile, the predictions by the North America specification are slightly unconservative.</p> </abstract>

2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Xingyou Yao

The cold-formed steel (CFS) lipped channel section with circular holes has been widely used in low-rise and multistory building structures as the column. However, the circular hole in the web makes the lipped channel column become susceptible to buckle. A total of 54 CFS lipped channel axial compression columns with and without circular holes were used to study the buckling behavior and the effective width design method. The interaction of the local buckling and the distortional buckling were observed for the short and intermediate columns, while the slender columns were controlled by the interaction of the local buckling, distortional buckling, and flexural buckling or flexural-torsional buckling. The experimental failure loads were gradually decreased with the increase in the diameter of the circular hole for the specimens with the same section. The failure loads of the specimens with two holes were lower than those of the specimens with one hole with same section and same diameter of holes. Then, the experimental results were used to validate a nonlinear finite element model (FEM) previously developed by the authors. The validated FEM was subsequently used to obtain additional 36 numerical failure results concerning the effects of the length, the section, and the diameter and the number of the circular holes. Furthermore, the proposal to calculate the distortional buckling coefficient of the CFS lipped channel section with circular holes were put forward based on numerical analysis considering the reduction of effect of holes. Finally, a proposal to improve the effective width method (EWM) design approach for CFS lipped channel sections with circular holes under axial compression was presented. The comparisons between experimental and numerical capacities and their calculations provided by the proposed EWM design method illustrate a great application of the proposed approach.


2013 ◽  
Vol 351-352 ◽  
pp. 747-752
Author(s):  
Shuai Liu ◽  
Qi Jie Ma ◽  
Pei Jun Wang

This article aims to shed light on the nonlinear local-distortional-global interactive behavior of web-slotted channel columns by use of the finite element method. The effects of three kinds of initial geometric imperfection based on different distortional buckling mode were evaluated. It indicates that different distortional buckling mode does little difference on the nonlinear interactive buckling behavior of web-slotted channels. Based on the extensive parametric study, some modifications were made to the traditional Effective Width Method for the practical design of web-slotted channel columns undergoing local-distortional-global interactive buckling.


2015 ◽  
Vol 735 ◽  
pp. 80-84 ◽  
Author(s):  
Yeong Huei Lee ◽  
Shahrin Mohammad ◽  
Yee Ling Lee

This paper performs analytical and experimental investigation on the section properties of locally produced cold-formed steel sections. Effective width method given by BS EN1993-1-3 is used to calculate the section properties for two slender cold-formed steel channel sections, namely KS200C20 and KS250C20. Local buckling and distortional buckling are taken into account in the calculation. Effective width method has significantly reduced the full sectional area and thus gives a relative lower value for the sectional resistance of cold-formed steel channel sections. The analytical results is compared to manufacturer’s data and differences of not more than 3.37% is recorded. Experimental study on the flexural behaviour on the two types of cold-formed steel channel sections is carried out. The results show that BS EN1993-1-3 has good agreement with experimental results for flexural resistance that included local and distortional buckling consideration. It is concluded that effective width method by BS EN1993-1-3 is suitable to calculate the section properties of of locally produced cold-formed steel channel sections.


2012 ◽  
Vol 166-169 ◽  
pp. 3391-3398
Author(s):  
Yang Zhao ◽  
Wei Ming Yan ◽  
Cheng Yu

For the distortional buckling of cold-formed thin-wall steel members, the Direct Strength Method (DSM) is a recently adopted design approach by foreign standard, and Chinese professional standard Technical specification for low-rise cold-formed thin-wall steel buildings present the calculation formulas based on the Effective Area Method (EAM) .The key of both methods is the elastic distortional buckling stress .At present, the calculation methods about it are over conservative .Compare the calculation results of method in AISI S100with the one calculated by software CUFSM ,for C and Z sections in bending and axial compression loading respectively in the North American Specifications for Cold-Formed Steel Structural Members (AISI S100). This paper presents revised simplified methods for calculating the elastic distortional buckling stress. The new methods yield more accurate results but similar computation cost compared to the existing methods.


Sign in / Sign up

Export Citation Format

Share Document