scholarly journals Skeletal Muscle Disuse Atrophy Is Not Attenuated by Dietary Protein Supplementation in Healthy Older Men

2014 ◽  
Vol 144 (8) ◽  
pp. 1196-1203 ◽  
Author(s):  
Marlou L. Dirks ◽  
Benjamin T. Wall ◽  
Rachel Nilwik ◽  
Daniëlle H.J.M. Weerts ◽  
Lex B. Verdijk ◽  
...  
2018 ◽  
Vol 125 (3) ◽  
pp. 850-861 ◽  
Author(s):  
Marlou L. Dirks ◽  
Benjamin T. Wall ◽  
Luc J. C. van Loon

Numerous situations, such as the recovery from illness or rehabilitation after injury, necessitate a period of muscle disuse in otherwise healthy individuals. Even a few days of immobilization or bed rest can lead to substantial loss of skeletal muscle tissue and compromise metabolic health. The decline in muscle mass is attributed largely to a decline in postabsorptive and postprandial muscle protein synthesis rates. Reintroduction of some level of muscle contraction by the application of neuromuscular electrical stimulation (NMES) can augment both postabsorptive and postprandial muscle protein synthesis rates and, as such, prevent or attenuate muscle loss during short-term disuse in various clinical populations. Whereas maintenance of habitual dietary protein consumption is a prerequisite for muscle mass maintenance, supplementing dietary protein above habitual intake levels does not prevent muscle loss during disuse in otherwise healthy humans. Combining the anabolic properties of physical activity (or surrogates) with appropriate nutritional support likely further increases the capacity to preserve skeletal muscle mass during a period of disuse. Therefore, effective interventional strategies to prevent or alleviate muscle disuse atrophy should include both exercise (mimetics) and appropriate nutritional support.


2020 ◽  
Vol 11 (4) ◽  
pp. 989-1001
Author(s):  
Emily E Howard ◽  
Stefan M Pasiakos ◽  
Maya A Fussell ◽  
Nancy R Rodriguez

ABSTRACT Muscle atrophy and weakness occur as a consequence of disuse after musculoskeletal injury (MSI). The slow recovery and persistence of these deficits even after physical rehabilitation efforts indicate that interventions designed to attenuate muscle atrophy and protect muscle function are necessary to accelerate and optimize recovery from MSI. Evidence suggests that manipulating protein intake via dietary protein or free amino acid–based supplementation diminishes muscle atrophy and/or preserves muscle function in experimental models of disuse (i.e., immobilization and bed rest in healthy populations). However, this concept has rarely been considered in the context of disuse following MSI, which often occurs with some muscle activation during postinjury physical rehabilitation. Given that exercise sensitizes skeletal muscle to the anabolic effect of protein ingestion, early rehabilitation may act synergistically with dietary protein to protect muscle mass and function during postinjury disuse conditions. This narrative review explores mechanisms of skeletal muscle disuse atrophy and recent advances delineating the role of protein intake as a potential countermeasure. The possible synergistic effect of protein-based interventions and postinjury rehabilitation in attenuating muscle atrophy and weakness following MSI is also considered.


2017 ◽  
Vol 312 (5) ◽  
pp. E394-E406 ◽  
Author(s):  
Samuel Lee ◽  
Teresa C. Leone ◽  
Lisa Rogosa ◽  
John Rumsey ◽  
Julio Ayala ◽  
...  

Peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α and -1β serve as master transcriptional regulators of muscle mitochondrial functional capacity and are capable of enhancing muscle endurance when overexpressed in mice. We sought to determine whether muscle-specific transgenic overexpression of PGC-1β affects the detraining response following endurance training. First, we established and validated a mouse exercise-training-detraining protocol. Second, using multiple physiological and gene expression end points, we found that PGC-1β overexpression in skeletal muscle of sedentary mice fully recapitulated the training response. Lastly, PGC-1β overexpression during the detraining period resulted in partial prevention of the detraining response. Specifically, an increase in the plateau at which O2 uptake (V̇o2) did not change from baseline with increasing treadmill speed [peak V̇o2 (ΔV̇o2max)] was maintained in trained mice with PGC-1β overexpression in muscle 6 wk after cessation of training. However, other detraining responses, including changes in running performance and in situ half relaxation time (a measure of contractility), were not affected by PGC-1β overexpression. We conclude that while activation of muscle PGC-1β is sufficient to drive the complete endurance phenotype in sedentary mice, it only partially prevents the detraining response following exercise training, suggesting that the process of endurance detraining involves mechanisms beyond the reversal of muscle autonomous mechanisms involved in endurance fitness. In addition, the protocol described here should be useful for assessing early-stage proof-of-concept interventions in preclinical models of muscle disuse atrophy.


2019 ◽  
Vol 33 (3) ◽  
pp. 4586-4597 ◽  
Author(s):  
Chris Mcglory ◽  
Stefan H. M. Gorissen ◽  
Michael Kamal ◽  
Ravninder Bahniwal ◽  
Amy J. Hector ◽  
...  

2020 ◽  
Vol 129 (1) ◽  
pp. 5-16 ◽  
Author(s):  
Erik D. Hanson ◽  
Andrew C. Betik ◽  
Cara A. Timpani ◽  
John Tarle ◽  
Xinmei Zhang ◽  
...  

Low testosterone levels during skeletal muscle disuse did not worsen declines in muscle mass and function, although hypogonadism may attenuate recovery during subsequent reloading. Diets high in casein did not improve outcomes during immobilization or reloading. Practical strategies are needed that do not compromise caloric intake yet provide effective protein doses to augment these adverse effects.


2006 ◽  
Vol 38 (Supplement) ◽  
pp. S52-S53
Author(s):  
Krista Vandenborne ◽  
Chris M. Gregory ◽  
Glenn A. Walter ◽  
Rongye Shi ◽  
Mark T. Scarborough ◽  
...  

PLoS ONE ◽  
2012 ◽  
Vol 7 (12) ◽  
pp. e51238 ◽  
Author(s):  
Charlotte Suetta ◽  
Ulrik Frandsen ◽  
Line Jensen ◽  
Mette Munk Jensen ◽  
Jakob G. Jespersen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document