scholarly journals Augmented Reality Storytelling – Narrative Design and Reconstruction of a Historical Event in situ

Author(s):  
Gunnar Liestoel

<p class="0abstract"><span lang="EN-GB">How may we best utilize mobile augmented reality for storytelling when reconstructing historical events onlocation? In this article we present a series of narrative design considerations when developing an augmented reality application recreating the assault on Omaha Beach in the early morning on D-Day. To what extent may we select existing genre conventions from, for example, documentary film, and adapt them to a location–based audio–visual medium like AR? How can we best combine sequence and access, the narrative flow of an unfolding historical event with the availability of background information, in order to enrich the experience of the story, but without distorting its coherence? To what extent may we draw from existing and well known media representations of the Omaha Beach landing? How was the battle documented with contemporary means? We present the rich documentation of photos, films, drawings, paintings, maps, action reports, official reports, etc., and discuss how these have been employed to create the published AR situated simulation. We also describe and discuss the testing and evaluation of the application on location with visitors, as well as online tracking of its current use.</span></p>

2021 ◽  
Vol 9 (3) ◽  
pp. 652
Author(s):  
Shigeru Kawai ◽  
Joval N. Martinez ◽  
Mads Lichtenberg ◽  
Erik Trampe ◽  
Michael Kühl ◽  
...  

Chloroflexus aggregans is a metabolically versatile, thermophilic, anoxygenic phototrophic member of the phylum Chloroflexota (formerly Chloroflexi), which can grow photoheterotrophically, photoautotrophically, chemoheterotrophically, and chemoautotrophically. In hot spring-associated microbial mats, C. aggregans co-exists with oxygenic cyanobacteria under dynamic micro-environmental conditions. To elucidate the predominant growth modes of C. aggregans, relative transcription levels of energy metabolism- and CO2 fixation-related genes were studied in Nakabusa Hot Springs microbial mats over a diel cycle and correlated with microscale in situ measurements of O2 and light. Metatranscriptomic analyses indicated two periods with different modes of energy metabolism of C. aggregans: (1) phototrophy around midday and (2) chemotrophy in the early morning hours. During midday, C. aggregans mainly employed photoheterotrophy when the microbial mats were hyperoxic (400–800 µmol L−1 O2). In the early morning hours, relative transcription peaks of genes encoding uptake hydrogenase, key enzymes for carbon fixation, respiratory complexes as well as enzymes for TCA cycle and acetate uptake suggest an aerobic chemomixotrophic lifestyle. This is the first in situ study of the versatile energy metabolism of C. aggregans based on gene transcription patterns. The results provide novel insights into the metabolic flexibility of these filamentous anoxygenic phototrophs that thrive under dynamic environmental conditions.


2021 ◽  
Vol 2021 (30) ◽  
Author(s):  
Veerle Rots ◽  
Justin Coppe ◽  
Nicholas Conard

During the 2020 season at Hohle Fels Cave in the Ach Valley of southwestern Germany the excavation team from the University of Tübingen recovered a bifacial leaf point in archaeological horizon (AH) X. This horizon is the fifth deepest of the Middle Paleolithic horizons at the site and is located roughly 120 cm beneath the base of the rich Aurignacian layers of the cave. The new leaf point, or Blattspitze in German, is the first artifact of its kind found in situ in the Swabian caves since Gustav Riek’s excavation at Haldenstein Cave near the source of the Lone River recovered two leaf points in excellent preservation in 1936. The new find allowed our team to conduct the first techno-functional study of a freshly recovered leaf point from the European Middle Paleolithic. This study demonstrates that the leaf point was hafted at the less pointy end of the artifact. The leaf point bears clear damage to the pointed end of the artifact that occurred during a hunting episode. A Neanderthal knapper further damaged the tool during an attempt to resharpen and rejuvenate the tool. This damage was likely the reason the knapper discarded the leaf point at Hohle Fels. This result and a re-examination of the two leaf points from Haldenstein Cave indicate that late Neanderthals used Blattspitzen for hunting large game. The current results do not explicitly prove that spears with hafted leaf points were always thrown or used as thrusting spears, and one can easily imagine scenarios in which a weapon of this kind could be used in both ways. Ideally, the ongoing excavation at Hohle Fels will recover more leaf points, which will give us the opportunity to document the technological variability of this kind of tool with regard to their manufacture, function and life history. We also view the current research at Hohle Fels as an excellent opportunity to gain a better and more strongly contextualized understanding of the technological system linking lithic, botanical and osseous technologies during this phase of the Middle Paleolithic. This paper also considers the place that hafted leaf points have within the broader evolutionary development of hunting and projectile technology.


2020 ◽  
Vol 5 (4) ◽  
pp. 136
Author(s):  
Puad Maulana Mandailing ◽  
Wijaya Mardiansyah ◽  
Muhammad Irfan ◽  
Arsali Arsali ◽  
Iskhaq Iskandar

The peak time of rainfall occurrence over an area has certain characteristics in which the difference in time and intensity of rainfall varies depending on its location and distance from the sea. This variation can be determined based on the phase and amplitude obtained using harmonic analysis. In this study, combined data from in-situ observation, satellite remote sensing and reanalysis were used to analyze spatial and temporal variations of peak rainfall events over peatland area of the South Sumatra Province. The results show that most of the South Sumatra Province has a diurnal peak of rainfall during afternoon ranging from 16.00 to 19.00 Western Indonesian Time. In addition, the results also indicate that the analysis on the in situ data revealed seasonal variation both in amplitude and time of maximum diurnal rainfall, while the reanalysis data only indicated a weak seasonal variation on the amplitude of the diurnal rainfall. Furthermore, spatial analysis shows that the time of maximum diurnal rainfall has spatial variation. Over the ocean, the time of maximum diurnal rainfall occurs during night time/early morning. Over the lowland or coastal area, the time of maximum diurnal rainfall occurs during afternoon, while over the high altitude (mountain) it occurs during late night.


2019 ◽  
pp. 1284-1297
Author(s):  
Khadijeh Rouzbehani ◽  
Ghazaleh Sajjadi ◽  
Mohamad Rahim Hatami

Breast cancer is a major health issue in all countries affecting thousands of women. Its causes are unknown and the national and international strategies to reduce its morbidity and mortality levels are based on early detection of cancer through screening and treatment according to clinical guidelines. Thus, knowledge of which women are at risk and why they are at risk is therefore essential component of disease prevention and screening. In 2015, an estimated 231,840 new cases of invasive breast cancer are expected to be diagnosed in women in the United States, along with 60,290 new cases of non-invasive (in situ) breast cancer. The purpose of this study is to provide a more detailed analysis of the breast cancer distribution in the United States by comparing the spatial distribution of breast cancer cases against physical environmental factors using Geographic Information System (GIS). Further, it gives background information to the GIS and its applications in health-related research.


Author(s):  
Pooja Siddharth Sukhdeve

Technology is ever-changing and ever-growing. One of the newest developing technologies is augmented reality (AR), which can be applied to many different existing technologies, such as computers, tablets, and smartphones. This chapter discusses the immersive learning process and the usage of AR into a simulated or in an artificial environment. Discussed is the background information on how the AR use in educational industries and the design process of AR immersive learning environment. The chapter also evaluates the benefits if immersive learning and AR.


Author(s):  
Khadijeh Rouzbehani ◽  
Ghazaleh Sajjadi ◽  
Mohamad Rahim Hatami

Breast cancer is a major health issue in all countries affecting thousands of women. Its causes are unknown and the national and international strategies to reduce its morbidity and mortality levels are based on early detection of cancer through screening and treatment according to clinical guidelines. Thus, knowledge of which women are at risk and why they are at risk is therefore essential component of disease prevention and screening. In 2015, an estimated 231,840 new cases of invasive breast cancer are expected to be diagnosed in women in the United States, along with 60,290 new cases of non-invasive (in situ) breast cancer. The purpose of this study is to provide a more detailed analysis of the breast cancer distribution in the United States by comparing the spatial distribution of breast cancer cases against physical environmental factors using Geographic Information System (GIS). Further, it gives background information to the GIS and its applications in health-related research.


2020 ◽  
Author(s):  
Wei Xu ◽  
Wen-Jie Dong ◽  
Ting-Ting Fu ◽  
Wei Gao ◽  
Chen-Qi Lu ◽  
...  

Abstract The Himalaya are among the youngest and highest mountains in the world, but the exact timing of their uplift and origins of their biodiversity are still in debate. The Himalayan region is a relatively small area but with exceptional diversity and endemism. One common hypothesis to explain the rich montane diversity is uplift-driven diversification–that orogeny creates conditions favoring rapid in situ speciation of resident lineages. We test this hypothesis in the Himalayan region using amphibians and reptiles, two environmental sensitive vertebrate groups. In addition, analysis of diversification of the herpetofauna provides an independent source of information to test competing geological hypotheses of Himalayan orogenesis. We conclude that the origins of the Himalayan herpetofauna date to the early Paleocene, but that diversification of most groups was concentrated in the Miocene. There was an increase in both rates and modes of diversification during the early to middle Miocene, together with regional interchange (dispersal) between the Himalaya and adjacent regions. Our analyses support a recently proposed stepwise geological model of Himalayan uplift beginning in the Paleocene, with a subsequent rapid increase of uplifting during the Miocene, finally give rise to the intensification of the modern South Asia Monsoon.


1983 ◽  
Vol 61 (3) ◽  
pp. 642-655 ◽  
Author(s):  
Thomas J. Moser ◽  
Thomas H. Nash III ◽  
Steven O. Link

The daily, in situ gross photosynthetic patterns of Cladonia stellaris (Opiz.) Pouz. & Vězda. and Cladonia rangiferina (L.) Wigg. were monitored during portions of the 1977, 1978, and 1979 growing seasons at Anaktuvuk Pass, Alaska. Photosynthetic activity in both species closely paralleled atmospheric moisture status, where peak photosynthetic rates were attained during or following sporadic summer rain. In addition, thallus absorption of moisture during extended periods of high atmospheric water vapor content gave rise to short periods of minimal photosynthetic activity. During late evening and early morning hours moistened thalli exhibited minimal or no photosynthetic activity, coinciding with consistent attenuation in solar radiation during these periods. Photosynthetic activity was not homogeneous throughout the thallus. The greatest activity occurred in the apical regions and decreased progressively into the basal regions. The apical 10-mm regions of C. stellaris and C. rangiferina thalli accounted for approximately 50% of their photosynthetic capabilities. The potential gross CO2 assimilation of the apical 10-mm regions over 72 days of the 1978 growing season was estimated at approximately 35 g CO2∙m−2 and 16 g CO2∙m−2 for C. stellaris and C. rangiferina, respectively.


Author(s):  
Zoltán Bárdosi ◽  
Christian Plattner ◽  
Yusuf Özbek ◽  
Thomas Hofmann ◽  
Srdjan Milosavljevic ◽  
...  

Abstract Purpose  A robotic intraoperative laser guidance system with hybrid optic-magnetic tracking for skull base surgery is presented. It provides in situ augmented reality guidance for microscopic interventions at the lateral skull base with minimal mental and workload overhead on surgeons working without a monitor and dedicated pointing tools. Methods  Three components were developed: a registration tool (Rhinospider), a hybrid magneto-optic-tracked robotic feedback control scheme and a modified robotic end-effector. Rhinospider optimizes registration of patient and preoperative CT data by excluding user errors in fiducial localization with magnetic tracking. The hybrid controller uses an integrated microscope HD camera for robotic control with a guidance beam shining on a dual plate setup avoiding magnetic field distortions. A robotic needle insertion platform (iSYS Medizintechnik GmbH, Austria) was modified to position a laser beam with high precision in a surgical scene compatible to microscopic surgery. Results  System accuracy was evaluated quantitatively at various target positions on a phantom. The accuracy found is 1.2 mm ± 0.5 mm. Errors are primarily due to magnetic tracking. This application accuracy seems suitable for most surgical procedures in the lateral skull base. The system was evaluated quantitatively during a mastoidectomy of an anatomic head specimen and was judged useful by the surgeon. Conclusion  A hybrid robotic laser guidance system with direct visual feedback is proposed for navigated drilling and intraoperative structure localization. The system provides visual cues directly on/in the patient anatomy, reducing the standard limitations of AR visualizations like depth perception. The custom- built end-effector for the iSYS robot is transparent to using surgical microscopes and compatible with magnetic tracking. The cadaver experiment showed that guidance was accurate and that the end-effector is unobtrusive. This laser guidance has potential to aid the surgeon in finding the optimal mastoidectomy trajectory in more difficult interventions.


Sign in / Sign up

Export Citation Format

Share Document