scholarly journals Alzheimer’s Disease Prediction Model Using Demographics and Categorical Data

Author(s):  
Aunsia Khan ◽  
Muhammad Usman

<p class="abstract">Diagnosing Alzheimer’s disease (AD) is usually difficult, especially when the disease is in its early stage. However, treatment is most likely to be effective at this stage; improving the diagnosis process. Several AD prediction models have been proposed in the past; however, these models endure a number of limitations such as small dataset, class imbalance, feature selection methods etc which place strong barriers towards the accurate prediction. In this paper, an AD prediction model has been proposed and validated using categorical dataset from National Alzheimer’s Coordination Center (NACC). The different categories such as Demographics, Clinical Diagnosis, MMSE &amp; Neuropsychological battery, is preprocessed for important features selection and class imbalance. A number of predominant classifiers namely, Naïve Bayes, J48, Decision Stump, LogitBoost, AdaBoost, and SDG-Text have been used to highlight the superiority of a classifier in predicting the potential AD patients. Experimental results revealed that Bayesian based classifiers improve AD detection accuracy up to 96.4% while using Clinical Diagnosis category.</p>

2021 ◽  
Author(s):  
Mosleh Hmoud Al-Adhaileh

Abstract Alzheimer's disease (AD) is a high-risk and atrophic neurological illness that slowly and gradually destroys brain cells (i.e. neurons). As the most common type of amentia, AD affects 60–65% of all people with amentia and poses major health dangers to middle-aged and elderly people. For classification of AD in the early stage, classification systems and computer-aided diagnostic techniques have been developed. Previously, machine learning approaches were applied to develop diagnostic systems by extracting features from neural images. Currently, deep learning approaches have been used in many real-time medical imaging applications. In this study, two deep neural network techniques, AlexNet and Restnet50, were applied for the classification and recognition of AD. The data used in this study to evaluate and test the proposed model included those from brain magnetic resonance imaging (MRI) images collected from the Kaggle website. A convolutional neural network (CNN) algorithm was applied to classify AD efficiently. CNNs were pre-trained using AlexNet and Restnet50 transfer learning models. The results of this experimentation showed that the proposed method is superior to the existing systems in terms of detection accuracy. The AlexNet model achieved outstanding performance based on five evaluation metrics (accuracy, F1 score, precision, sensitivity and specificity) for the brain MRI datasets. AlexNet displayed an accuracy of 94.53%, specificity of 98.21%, F1 score of 94.12% and sensitivity of 100%, outperforming Restnet50. The proposed method can help improve CAD methods for AD in medical investigations.


2008 ◽  
Vol 113 (5) ◽  
pp. 369-386 ◽  
Author(s):  
Sharon J. Krinsky-McHale ◽  
Darlynne A. Devenny ◽  
Phyllis Kittler ◽  
Wayne Silverman

Abstract Adults with Down syndrome and early stage Alzheimer's disease showed decline in their ability to selectively attend to stimuli in a multitrial cancellation task. They also showed variability in their performance over the test trials, whereas healthy participants showed stability. These changes in performance were observed approximately 2 years prior to a physician's diagnosis of possible Alzheimer's disease, which was made when they were exhibiting declines in episodic memory suggestive of mild cognitive impairment. Performance on this task varied with the evolution of dementia, showed modestly good sensitivity and specificity, and was relatively easy to administer. Given these qualities this task could be a valuable addition to a neuropsychological battery intended for the assessment of mild cognitive impairment and Alzheimer's disease in adults with Down syndrome.


2019 ◽  
Vol 30 (3) ◽  
pp. 157-168
Author(s):  
Helmut Hildebrandt ◽  
Jana Schill ◽  
Jana Bördgen ◽  
Andreas Kastrup ◽  
Paul Eling

Abstract. This article explores the possibility of differentiating between patients suffering from Alzheimer’s disease (AD) and patients with other kinds of dementia by focusing on false alarms (FAs) on a picture recognition task (PRT). In Study 1, we compared AD and non-AD patients on the PRT and found that FAs discriminate well between these groups. Study 2 served to improve the discriminatory power of the FA score on the picture recognition task by adding associated pairs. Here, too, the FA score differentiated well between AD and non-AD patients, though the discriminatory power did not improve. The findings suggest that AD patients show a liberal response bias. Taken together, these studies suggest that FAs in picture recognition are of major importance for the clinical diagnosis of AD.


2020 ◽  
Vol 17 (1) ◽  
pp. 93-103 ◽  
Author(s):  
Jing Ma ◽  
Yuan Gao ◽  
Wei Tang ◽  
Wei Huang ◽  
Yong Tang

Background: Studies have suggested that cognitive impairment in Alzheimer’s disease (AD) is associated with dendritic spine loss, especially in the hippocampus. Fluoxetine (FLX) has been shown to improve cognition in the early stage of AD and to be associated with diminishing synapse degeneration in the hippocampus. However, little is known about whether FLX affects the pathogenesis of AD in the middle-tolate stage and whether its effects are correlated with the amelioration of hippocampal dendritic dysfunction. Previously, it has been observed that FLX improves the spatial learning ability of middleaged APP/PS1 mice. Objective: In the present study, we further characterized the impact of FLX on dendritic spines in the hippocampus of middle-aged APP/PS1 mice. Results: It has been found that the numbers of dendritic spines in dentate gyrus (DG), CA1 and CA2/3 of hippocampus were significantly increased by FLX. Meanwhile, FLX effectively attenuated hyperphosphorylation of tau at Ser396 and elevated protein levels of postsynaptic density 95 (PSD-95) and synapsin-1 (SYN-1) in the hippocampus. Conclusion: These results indicated that the enhanced learning ability observed in FLX-treated middle-aged APP/PS1 mice might be associated with remarkable mitigation of hippocampal dendritic spine pathology by FLX and suggested that FLX might be explored as a new strategy for therapy of AD in the middle-to-late stage.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hao Hu ◽  
Lan Tan ◽  
Yan-Lin Bi ◽  
Wei Xu ◽  
Lin Tan ◽  
...  

AbstractThe bridging integrator 1 (BIN1) gene is the second most important susceptibility gene for late-onset Alzheimer’s disease (LOAD) after apolipoprotein E (APOE) gene. To explore whether the BIN1 methylation in peripheral blood changed in the early stage of LOAD, we included 814 participants (484 cognitively normal participants [CN] and 330 participants with subjective cognitive decline [SCD]) from the Chinese Alzheimer’s Biomarker and LifestylE (CABLE) database. Then we tested associations of methylation of BIN1 promoter in peripheral blood with the susceptibility for preclinical AD or early changes of cerebrospinal fluid (CSF) AD-related biomarkers. Results showed that SCD participants with significant AD biological characteristics had lower methylation levels of BIN1 promoter, even after correcting for covariates. Hypomethylation of BIN1 promoter were associated with decreased CSF Aβ42 (p = 0.0008), as well as increased p-tau/Aβ42 (p = 0.0001) and t-tau/Aβ42 (p < 0.0001) in total participants. Subgroup analysis showed that the above associations only remained in the SCD subgroup. In addition, hypomethylation of BIN1 promoter was also accompanied by increased CSF p-tau (p = 0.0028) and t-tau (p = 0.0130) in the SCD subgroup, which was independent of CSF Aβ42. Finally, above associations were still significant after correcting single nucleotide polymorphic sites (SNPs) and interaction of APOE ɛ4 status. Our study is the first to find a robust association between hypomethylation of BIN1 promoter in peripheral blood and preclinical AD. This provides new evidence for the involvement of BIN1 in AD, and may contribute to the discovery of new therapeutic targets for AD.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Jung Eun Park ◽  
Do Sung Lim ◽  
Yeong Hee Cho ◽  
Kyu Yeong Choi ◽  
Jang Jae Lee ◽  
...  

Abstract Background Alzheimer’s disease (AD) is the most common cause of dementia and most of AD patients suffer from vascular abnormalities and neuroinflammation. There is an urgent need to develop novel blood biomarkers capable of diagnosing Alzheimer’s disease (AD) at very early stage. This study was performed to find out new accurate plasma diagnostic biomarkers for AD by investigating a direct relationship between plasma contact system and AD. Methods A total 101 of human CSF and plasma samples from normal and AD patients were analyzed. The contact factor activities in plasma were measured with the corresponding specific peptide substrates. Results The activities of contact factors (FXIIa, FXIa, plasma kallikrein) and FXa clearly increased and statistically correlated as AD progresses. We present here, for the first time, the FXIIa cut-off scores to as: > 26.3 U/ml for prodromal AD [area under the curve (AUC) = 0.783, p < 0.001] and > 27.2 U/ml for AD dementia (AUC = 0.906, p < 0.001). We also describe the cut-off scores from the ratios of CSF Aβ1–42 versus the contact factors. Of these, the representative ratio cut-off scores of Aβ1–42/FXIIa were to be: < 33.8 for prodromal AD (AUC = 0.965, p < 0.001) and < 27.44 for AD dementia (AUC = 1.0, p < 0.001). Conclusion The activation of plasma contact system is closely associated with clinical stage of AD, and FXIIa activity as well as the cut-off scores of CSF Aβ1–42/FXIIa can be used as novel accurate diagnostic AD biomarkers.


2021 ◽  
Vol 11 (4) ◽  
pp. 1574
Author(s):  
Shabana Urooj ◽  
Satya P. Singh ◽  
Areej Malibari ◽  
Fadwa Alrowais ◽  
Shaeen Kalathil

Effective and accurate diagnosis of Alzheimer’s disease (AD), as well as early-stage detection, has gained more and more attention in recent years. For AD classification, we propose a new hybrid method for early detection of Alzheimer’s disease (AD) using Polar Harmonic Transforms (PHT) and Self-adaptive Differential Evolution Wavelet Neural Network (SaDE-WNN). The orthogonal moments are used for feature extraction from the grey matter tissues of structural Magnetic Resonance Imaging (MRI) data. Irrelevant features are removed by the feature selection process through evaluating the in-class and among-class variance. In recent years, WNNs have gained attention in classification tasks; however, they suffer from the problem of initial parameter tuning, parameter setting. We proposed a WNN with the self-adaptation technique for controlling the Differential Evolution (DE) parameters, i.e., the mutation scale factor (F) and the cross-over rate (CR). Experimental results on the Alzheimer’s disease Neuroimaging Initiative (ADNI) database indicate that the proposed method yields the best overall classification results between AD and mild cognitive impairment (MCI) (93.7% accuracy, 86.0% sensitivity, 98.0% specificity, and 0.97 area under the curve (AUC)), MCI and healthy control (HC) (92.9% accuracy, 95.2% sensitivity, 88.9% specificity, and 0.98 AUC), and AD and HC (94.4% accuracy, 88.7% sensitivity, 98.9% specificity and 0.99 AUC).


Sign in / Sign up

Export Citation Format

Share Document