scholarly journals Diagnosis and Classification of Alzheimer's Disease by Using a Convolution Neural Network Algorithm

Author(s):  
Mosleh Hmoud Al-Adhaileh

Abstract Alzheimer's disease (AD) is a high-risk and atrophic neurological illness that slowly and gradually destroys brain cells (i.e. neurons). As the most common type of amentia, AD affects 60–65% of all people with amentia and poses major health dangers to middle-aged and elderly people. For classification of AD in the early stage, classification systems and computer-aided diagnostic techniques have been developed. Previously, machine learning approaches were applied to develop diagnostic systems by extracting features from neural images. Currently, deep learning approaches have been used in many real-time medical imaging applications. In this study, two deep neural network techniques, AlexNet and Restnet50, were applied for the classification and recognition of AD. The data used in this study to evaluate and test the proposed model included those from brain magnetic resonance imaging (MRI) images collected from the Kaggle website. A convolutional neural network (CNN) algorithm was applied to classify AD efficiently. CNNs were pre-trained using AlexNet and Restnet50 transfer learning models. The results of this experimentation showed that the proposed method is superior to the existing systems in terms of detection accuracy. The AlexNet model achieved outstanding performance based on five evaluation metrics (accuracy, F1 score, precision, sensitivity and specificity) for the brain MRI datasets. AlexNet displayed an accuracy of 94.53%, specificity of 98.21%, F1 score of 94.12% and sensitivity of 100%, outperforming Restnet50. The proposed method can help improve CAD methods for AD in medical investigations.

2020 ◽  
Vol 10 (2) ◽  
pp. 84 ◽  
Author(s):  
Atif Mehmood ◽  
Muazzam Maqsood ◽  
Muzaffar Bashir ◽  
Yang Shuyuan

Alzheimer’s disease (AD) may cause damage to the memory cells permanently, which results in the form of dementia. The diagnosis of Alzheimer’s disease at an early stage is a problematic task for researchers. For this, machine learning and deep convolutional neural network (CNN) based approaches are readily available to solve various problems related to brain image data analysis. In clinical research, magnetic resonance imaging (MRI) is used to diagnose AD. For accurate classification of dementia stages, we need highly discriminative features obtained from MRI images. Recently advanced deep CNN-based models successfully proved their accuracy. However, due to a smaller number of image samples available in the datasets, there exist problems of over-fitting hindering the performance of deep learning approaches. In this research, we developed a Siamese convolutional neural network (SCNN) model inspired by VGG-16 (also called Oxford Net) to classify dementia stages. In our approach, we extend the insufficient and imbalanced data by using augmentation approaches. Experiments are performed on a publicly available dataset open access series of imaging studies (OASIS), by using the proposed approach, an excellent test accuracy of 99.05% is achieved for the classification of dementia stages. We compared our model with the state-of-the-art models and discovered that the proposed model outperformed the state-of-the-art models in terms of performance, efficiency, and accuracy.


Hippocampus is the structure of brain thatis mostly affected by Alzheimer’s disease at an early stage. Atrophy of hippocampus has been found asa predictive feature for Alzheimer’s disease diagnosis. To measure the atrophy of hippocampus we need to segment it out from surrounding structures of brain. Manual segmentation of hippocampus has beenfound standard technique for hippocampus segmentation in literature, but isvery time consuming and depends on particular anatomical information. In this work we have proposed an automatic approach to segment hippocampus considering texture and active contour from the brain Magnetic Resonance Image. After segmentation, features based on atrophy and shape of hippocampus has beenmeasured. Support vector machine classifier with radial basis function kernel has been analyzed with extracted features for classification of Alzheimer’s and control subjects. In the proposed technique, 200AD MRI and 200control MRI have been considered from Alzheimer’s Disease Neuroimaging Initiative database. The experiment have shown 93% accuracy, 0.96 sensitivity and 0.90specificity with atrophy feature and 94% accuracy, 0.96sensitivity and 0.92specificity with shape feature. Further, 0.96sensitivity, 1 specificity and 98% accuracyhave beenobtained with the fusion of atrophy and shape feature


2021 ◽  
Vol 11 (4) ◽  
pp. 1574
Author(s):  
Shabana Urooj ◽  
Satya P. Singh ◽  
Areej Malibari ◽  
Fadwa Alrowais ◽  
Shaeen Kalathil

Effective and accurate diagnosis of Alzheimer’s disease (AD), as well as early-stage detection, has gained more and more attention in recent years. For AD classification, we propose a new hybrid method for early detection of Alzheimer’s disease (AD) using Polar Harmonic Transforms (PHT) and Self-adaptive Differential Evolution Wavelet Neural Network (SaDE-WNN). The orthogonal moments are used for feature extraction from the grey matter tissues of structural Magnetic Resonance Imaging (MRI) data. Irrelevant features are removed by the feature selection process through evaluating the in-class and among-class variance. In recent years, WNNs have gained attention in classification tasks; however, they suffer from the problem of initial parameter tuning, parameter setting. We proposed a WNN with the self-adaptation technique for controlling the Differential Evolution (DE) parameters, i.e., the mutation scale factor (F) and the cross-over rate (CR). Experimental results on the Alzheimer’s disease Neuroimaging Initiative (ADNI) database indicate that the proposed method yields the best overall classification results between AD and mild cognitive impairment (MCI) (93.7% accuracy, 86.0% sensitivity, 98.0% specificity, and 0.97 area under the curve (AUC)), MCI and healthy control (HC) (92.9% accuracy, 95.2% sensitivity, 88.9% specificity, and 0.98 AUC), and AD and HC (94.4% accuracy, 88.7% sensitivity, 98.9% specificity and 0.99 AUC).


Author(s):  
Aunsia Khan ◽  
Muhammad Usman

<p class="abstract">Diagnosing Alzheimer’s disease (AD) is usually difficult, especially when the disease is in its early stage. However, treatment is most likely to be effective at this stage; improving the diagnosis process. Several AD prediction models have been proposed in the past; however, these models endure a number of limitations such as small dataset, class imbalance, feature selection methods etc which place strong barriers towards the accurate prediction. In this paper, an AD prediction model has been proposed and validated using categorical dataset from National Alzheimer’s Coordination Center (NACC). The different categories such as Demographics, Clinical Diagnosis, MMSE &amp; Neuropsychological battery, is preprocessed for important features selection and class imbalance. A number of predominant classifiers namely, Naïve Bayes, J48, Decision Stump, LogitBoost, AdaBoost, and SDG-Text have been used to highlight the superiority of a classifier in predicting the potential AD patients. Experimental results revealed that Bayesian based classifiers improve AD detection accuracy up to 96.4% while using Clinical Diagnosis category.</p>


2020 ◽  
Vol 10 (5) ◽  
pp. 1040-1048 ◽  
Author(s):  
Xianwei Jiang ◽  
Liang Chang ◽  
Yu-Dong Zhang

More than 35 million patients are suffering from Alzheimer’s disease and this number is growing, which puts a heavy burden on countries around the world. Early detection is of benefit, in which the deep learning can aid AD identification effectively and gain ideal results. A novel eight-layer convolutional neural network with batch normalization and dropout techniques for classification of Alzheimer’s disease was proposed. After data augmentation, the training dataset contained 7399 AD patient and 7399 HC subjects. Our eight-layer CNN-BN-DO-DA method yielded a sensitivity of 97.77%, a specificity of 97.76%, a precision of 97.79%, an accuracy of 97.76%, a F1 of 97.76%, and a MCC of 95.56% on the test set, which achieved the best performance in seven state-of-the-art approaches. The results strongly demonstrate that this method can effectively assist the clinical diagnosis of Alzheimer’s disease.


2021 ◽  
Author(s):  
Rachana Tank ◽  
Joey Ward ◽  
Kristin E. Flegal ◽  
Daniel Smith ◽  
Mark E.S. Bailey ◽  
...  

Background and purpose: Previous studies testing associations between polygenic risk for late-onset Alzheimer’s disease (LOAD-PGR) and brain magnetic resonance imaging (MRI) measures have been limited by small samples and inconsistent consideration of potential confounders. This study investigates whether higher LOAD-PGR is associated with differences in structural brain imaging and cognitive values in a relatively large sample of non-demented, generally healthy adults (UK Biobank). Method: Summary statistics were used to create PGR scores for n=32,790 participants using LDpred. Outcomes included 12 structural MRI volumes and 6 concurrent cognitive measures. Models were adjusted for age, sex, body mass index, genotyping chip, 8 principal components, lifetime smoking, apolipoprotein (APOE) e4 genotype and socioeconomic deprivation. We tested for statistical interactions between APOE e4 allele dose and LOAD-PGR vs. all outcomes. Results: In fully adjusted models, LOAD-PGR was associated with worse fluid intelligence (standardised beta [β] = -0.080 per LOAD-PGR standard deviation, p = 0.002), matrix completion (β = -0.102, p = 0.003), smaller left hippocampal total (β = -0.118, p = 0.002) and body (β = -0.069, p = 0.002) volumes, but not other hippocampal subdivisions. There were no significant APOE x LOAD-PGR score interactions for any outcomes in fully adjusted models. Discussion: This is the largest study to date investigating LOAD-PGR and non-demented structural brain MRI and cognition phenotypes. LOAD-PGR was associated with smaller hippocampal volumes and aspects of cognitive ability in healthy adults, and could supplement APOE status in risk stratification of cognitive impairment/LOAD.


Sign in / Sign up

Export Citation Format

Share Document