Determination of The Fluid Loss Properties of Samples for Different Flow Regimes Based on The Data of Laboratory Experiments on Hydraulic Fracturing

Author(s):  
E.V. Novikova ◽  
M.A. Trimonova
2021 ◽  
Author(s):  
Helen Novikova ◽  
Mariia Trimonova

<p>Recently, attention to the development of low-permeable reservoirs has been increasing. More and more attention is being paid to the search for various methods of data analysis of mini-hydraulic fracturing and computer modeling of the hydraulic fracturing process, which will simplify the entire procedure of hydraulic fracturing in a real field and reduce financial costs. The increase in interest is due to the fact that the results of the hydraulic fracturing are used to determine some important characteristics of the formation.</p><p>One of such important characteristics of a reservoir is permeability. In the course of this study, the data obtained from a series of laboratory experiments on mini-hydraulic fracturing were processed. The main goal was to determine the value of permeability of the medium in which the hydraulic fracture was formed and propagated, with the help of various standard methods. The second objective of the study was to compare the calculated values with real ones known from preliminary conducted laboratory experiments.</p><p>In the frame of the work, the laboratory experiments on mini-hydraulic fracturing were carried out using a special experimental setup [1]. The uniqueness of this experimental setup lies in the fact that it allows to perform a triaxial loading of the sample under consideration. The sample material was selected according to the similarity criteria between the fracturing process in the experiment and the fracturing process in the real field. These features make it possible to approximate the conditions of a laboratory experiment on hydraulic fracturing to real field conditions.</p><p>As a result, pressure-time dependencies were obtained for series of laboratory experiments. Further analysis of the curves was carried out in the time period after fracture closure.</p><p>In the course of data analysis, the flow regimes in the medium during the time period after fracture closure were estimated. After that, the values of permeability were calculated using approach introduced by Nolte [2, 3]. The permeability values were also estimated using the method proposed by Horner [4] and later modified by Nolte [5]. All theoretically obtained values were compared with real values of permeabilities.</p><p><strong>Acknowledgements</strong></p><p>The reported study was funded by RFBR, project number 20-35-80018, and state task 0146-2019-0007.</p><p><strong>References</strong></p><p>1. Trimonova M., Baryshnikov N., Zenchenko E., Zenchenko P., Turuntaev S.: “The Study of the Unstable Fracture Propagation in the Injection Well: Numerical and Laboratory Modelling,” (2017).</p><p>2. Nolte, K. G.: “Determination of Fracture Parameters from Fracturing Pressure Decline,” Las Vegas (1979).</p><p>3. Nolte, K. G.: “A General Analysis of Fracturing Pressure Decline With Application to Three Models,” (1986).</p><p>4. Horner, D. R.: “Pressure Build-Up in Wells,” Netherlands (1951).</p><p>5. Nolte, K. G., Maniere, J. L., Owens, K. A.: “After-Closure Analysis of Fracture Calibration Tests,” Texas (1997).</p>


2015 ◽  
Vol 30 (03) ◽  
pp. 205-214 ◽  
Author(s):  
Javier Sanchez Reyes ◽  
Richard D. Hutchins ◽  
Michael D. Parris

2018 ◽  
Vol 6 (4) ◽  
pp. 208
Author(s):  
Hamdiana Hamdiana ◽  
Minarni Rama Jura ◽  
Ratman Ratman

The use of traditional materials is one alternative for the treatment of kidney stones. One of them is utilizing a plant of patikan kebo (Euphorbia hirta). This study is conducted by using laboratory experiments and the extract of the plant of patikan kebo red and patikan kebo green to dissolve the calcium phosphate as a substitute for kidney stones. The extraction of samples is conducted by decoction. The aim of the study is to determine the effective concentration of the extracts of patikan kebo red and green to dissolve calcium and test the effectiveness of the extracts of patikan kebo to dissolve calcium compared to Batugin elixir and distilled water. Determination of the concentration of dissolved calcium in the extracts using a flame photometer. The results show that the extract of patikan kebo red with a concentration of 2.1% is effective in dissolve the calcium with a concentration of 5.2 ppm. The extract of patikan kebo green with a concentration of 27.4% is effective in dissolving the calcium with a concentration of 27.5 ppm. When compared with Batugin elixir and distilled water, Batugin elixir can only dissolve the calcium with concentration 15.3 ppm, while distilled water can only dissolve 3 ppm of the calcium.


2011 ◽  
Vol 127 (6_7) ◽  
pp. 243-248 ◽  
Author(s):  
Takatoshi ITO ◽  
Akira IGARASHI ◽  
Koji YAMAMOTO

2006 ◽  
Vol 306-308 ◽  
pp. 1509-1514 ◽  
Author(s):  
Jing Feng ◽  
Qian Sheng ◽  
Chao Wen Luo ◽  
Jing Zeng

It is very important to study the pristine stress field in Civil, Mining, Petroleum engineering as well as in Geology, Geophysics, and Seismology. There are various methods of determination of in-situ stress in rock mass. However, hydraulic fracturing techniques is the most convenient method to determine and interpret the test results. Based on an hydraulic fracturing stress measurement campaign at an underground liquefied petroleum gas storage project which locates in ZhuHai, China, this paper briefly describes the various uses of stress measurement, details of hydraulic fracturing test system, test procedure adopted and the concept of hydraulic fracturing in arriving at the in-situ stresses of the rock mass.


2021 ◽  
Author(s):  
Vil Syrtlanov ◽  
Yury Golovatskiy ◽  
Konstantin Chistikov ◽  
Dmitriy Bormashov

Abstract This work presents the approaches used for the optimal placement and determination of parameters of hydraulic fractures in horizontal and multilateral wells in a low-permeability reservoir using various methods, including 3D modeling. The results of the production rate of a multilateral dualwellbore well are analyzed after the actual hydraulic fracturing performed on the basis of calculations. The advantages and disadvantages of modeling methods are evaluated, recommendations are given to improve the reliability of calculations for models with hydraulic fracturing (HF)/ multistage hydraulic fracturing (MHF).


2022 ◽  
Author(s):  
Joern Loehken ◽  
Davood Yosefnejad ◽  
Liam McNelis ◽  
Bernd Fricke

Abstract Due to the increases in completion costs demand for production improvements, fracturing through double casing in upper reservoirs for mature wells and refracturing early stimulated wells to change the completion design, has become more and more popular. One of the most common technologies used to re-stimulate previously fracked wells, is to run a second, smaller casing or tubular inside of the existing and already perforated pipes of the completed well. The new inner and old outer casing are isolated from each other by a cement layer, which prevents any hydraulic communication between the pre-existing and new perforations, as well as between adjacent new perforations. For these smaller inner casing diameters, specially tailored and designed re-fracturing perforation systems are deployed, which can shoot casing entrance holes of very similar size through both casings, nearly independent of the phasing and still capable of creating tunnels reaching beyond the cement layer into the natural rock formation. Although discussing on the API RP-19B section VII test format has recently been initiated and many companies have started to test multiple casing scenarios and charge performance, not much is known about the complex flow through two radially aligned holes in dual casings. In the paper we will look in detail at the parameters which influence the flow, especially the Coefficient of Discharge of such a dual casing setup. We will evaluate how much the near wellbore pressure drop is affected by the hole's sizes in the first and second casing, respectively the difference between them and investigate how the cement layer is influenced by turbulences, which might build up in the annulus. The results will enhance the design and provide a better understanding of fracturing or refracturing through double casings for hydraulic fracturing specialists and both operation and services companies.


Sign in / Sign up

Export Citation Format

Share Document