scholarly journals Pulpal responses after direct pulp capping with two calcium-silicate cements in a rat model

2019 ◽  
Vol 38 (4) ◽  
pp. 584-590
Author(s):  
Panruethai TRONGKIJ ◽  
Supachai SUTIMUNTANAKUL ◽  
Puangwan LAPTHANASUPKUL ◽  
Chitpol CHAIMANAKARN ◽  
Rebecca H. WONG ◽  
...  
2016 ◽  
Vol 63 (4) ◽  
pp. 183-192 ◽  
Author(s):  
Marijana Popović Bajić ◽  
Violeta Petrović ◽  
Vanja Opačić Galić ◽  
Vesna Danilović ◽  
Vukoman Jokanović ◽  
...  

Summary Introduction Direct pulp capping is an important therapeutic method that has goal to provide formation of dentin bridge and healing process of the pulp. The aim of this study was to investigate the effects of new nanostructural materials based on calcium silicate systems and hydroxyapatite on exposed dental pulp in Vietnamese pigs. Material and Methods The study was conducted on 30 teeth of two Vietnamese pigs (Sus scrofa verus). On buccal surfaces of incisors, canines and first premolars, class V cavities were prepared with a small round bur and pulp horn was exposed. In the first experimental group (10 teeth) the perforation was covered with new nanostructural material based on calcium silicate systems (CS). In the second experimental group, the perforation was covered with compound of calcium silicate systems and hydroxyapatite (HA-CS) (10 teeth). In the control group, exposed pulp was covered with Pro Root MTA® (Dentsply Tulsa Dental, Johnson City, TN, USA) (10 teeth). All cavities were restored with glass ionomer cement (GC Fuji VIII, GC Corporation, Tokyo, Japan). Observation period was 28 days. After sacrificing the animals, histological preparations were done to analyze the presence of dentin bridge, inflammatory reaction of the pulp, pulp tissue reorganization and the presence of bacteria. Results Dentin bridge was observed in all teeth (experimental and control groups). Inflammation of the pulp was mild to moderate in all groups. Neoangiogenesis and many odontoblast like cells responsible for dentin bridge formation were detected. Necrosis was not observed in any case, neither the presence of Gram-positive bacteria in the pulp. Conclusion Histological analysis indicated favorable therapeutic effects of new nanostructural materials based on calcium silicate systems and hydroxyapatite for direct pulp capping in teeth of Vietnamese pigs.


Materials ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2102 ◽  
Author(s):  
Xuan Tran ◽  
Hamideh Salehi ◽  
Minh Truong ◽  
Minic Sandra ◽  
Jeremy Sadoine ◽  
...  

Nowadays, the preservation of dental pulp vitality is an integral part of our daily therapies. The success of these treatments depends on the clinical situation as well as the biomaterials used. Mineral Trioxide aggregate and BiodentineTM are commonly used as pulp capping materials. One objective of vital pulp therapy is the repair/regeneration of the pulp. In addition to the initial inflammatory status of the pulp, the nature and quality of the new mineralized tissue obtained after pulp capping directly influence the success of the treatment. In order to characterize the reparative dentin, in the current study, the chemical composition and microstructure of the dentin bridge after direct pulp capping using Biodentine™ and mineral trioxide aggregate (MTA) was studied by using Raman microspectroscopy and scanning electron microscopy, respectively. The results showed that the reparative dentin bridge observed in both groups presented dentin tubules and chemical composition similar to primary dentin. With the limitations of this study, the calcium-silicate-based cements used as pulp capping materials provide an optimal environment for pulp healing, resulting in a reparative dentin resembling on certain points of the primary dentin and the regeneration of the pulp.


2019 ◽  
Vol 12 (4) ◽  
pp. 182-186
Author(s):  
Mozammal Hossain ◽  
Mahmood Sajedeen ◽  
Yukio Nakamura

This study was performed to examine whether calcium silicate could induce reparative dentin formation without eliciting any adverse effect in direct pulp capping of premolar teeth. Twenty participants who need extraction of their 4 healthy permanent premolar teeth for orthodontic reasons were included in this study. Following the surgical procedure, the exposed pulp tissue was treated either with calcium silicate or covered with calcium hydroxide paste. On day 3, 7, 14 and 28, the experimental teeth was extracted and examined using light microscopy and histometric analysis to observe the inflammatory changes and the amount of reparative dentin formation. The results showed that in the calcium silicate treated teeth, substantial amounts of dentine-like tissue was formed on day 14 and mostly located on the exposure site. It was also observed in the calcium hydroxide treated teeth but dentin-like tissue located at a distance from the exposure site. The total amount of reparative dentine formed in the calcium silicate-treated teeth was significantly higher (p<0.005) than in the calcium hydroxide-treated specimens. In conclusion that the calcium silicate indices pulpal wound healing and reparative formation in the exposed teeth without affecting the normal function of the remaining pulp.


2020 ◽  
Vol 67 (2) ◽  
pp. 75-82
Author(s):  
Vasilka Rendzova ◽  
Sonja Apostolska ◽  
Emilija Kostadinovska ◽  
Maja Antanasova ◽  
Marina Eftimoska ◽  
...  

Primary purpose of restorative dentistry is to preserve pulp vitality. Besides calcium hydroxide, the application of calcium silicate cements as a material for direct pulp capping has become used recently. The aim of our study was to investigate the influence of materials for direct and indirect pulp capping on the bond strength of composite restorations using two different self etch dentin adhesives. The test was performed on 60 intact molars extracted for periodontal or orthodontic reasons. The prepared samples were divided into the two groups and three subgroups depending on the adhesive and pulp cupping material. Two different calcium silicate based materials were used for pulp cupping. One step and two steps self etch dentin adhesive was applied to prepared specimens depending on the group and with the help of a specially made metal mold set up a composite post. The share bond strength was assessed using a universal testing machine. The results showed significant difference in the share bond strength between the samples treated with TheraCal LC and Biodentine with TheraCal LC being superior to Biodentine.


2020 ◽  
Vol 17 (2) ◽  
pp. 78
Author(s):  
MonaM Abdel Sameia ◽  
AbeerM Darrag ◽  
WalaaM Ghoneim

2020 ◽  
Vol 8 (24) ◽  
pp. 5320-5329 ◽  
Author(s):  
Kumiko Yoshihara ◽  
Noriyuki Nagaoka ◽  
Takumi Okihara ◽  
Masao Irie ◽  
Akihiro Matsukawa ◽  
...  

Several studies have shown the clinical success of hydraulic calcium-silicate cements (hCSCs) for direct and indirect pulp capping and root repair.


2017 ◽  
Vol 145 (7-8) ◽  
pp. 370-377 ◽  
Author(s):  
Vanja Opacic-Galic ◽  
Violeta Petrovic ◽  
Vukoman Jokanovic ◽  
Slavoljub Zivkovic

Introduction/Objective. Development of materials which could be used as biological bone substitutes is one of the most valuable and active fields of biomaterial research. The goal of the study was to research the reaction of tissue on calcium silicate- (CS) and hydroxyapatitebased (CS-HA) newly synthesized nanomaterials, after being implanted into the subcutaneous tissue of a rats and direct pulp capping of rabbit teeth. Methods. The tested materials were implanted in 40 Wistar male rats, sacrificed after seven, 15, 30, and 60 days. The direct pulp capping was performed on the teeth of rabbits. Cavities were prepared on the vestibular surface of the incisors. The animals were sacrificed after 10 and 15 days. The control material was mineral trioxide aggregate (MTA). Histological analysis covered the tracking of inflammatory reaction cellular components, presence of gigantic cells, and necrosis of the tissue. Results. Seven days after the implantation, the strongest inflammatory response was given by the MTA (3.3 ?} 0.48), while CS and CS-HA scored 3 ? 0.71. After 60 days, the rate of inflammatory reactions dropped, which was the least visible with CS-HA (0.2 ? 0.45). The least visible inflammatory reaction of the rabbits? pulp tissue was spotted with the CS (1.83 ? 0.75), than with the MTA and CS-HA (2.67 ? 1.53, 3 ? 0.63). Conclusion. The newly synthesized materials caused a slight reaction of the subcutaneous tissue. CS-HA showed the best tissue tolerance. Nanostructural biomaterials caused a slight to moderate inflammatory reaction of the rabbits? pulp tissue only in the immediate vicinity of the implanted material.


Sign in / Sign up

Export Citation Format

Share Document