Portia: a low cost, high accuracy method of three dimensional location tracking

SciVee ◽  
2008 ◽  
2020 ◽  
Vol 17 (3) ◽  
pp. 0899
Author(s):  
Samera Shams Hussei ◽  
Sukaina Sh Altyar ◽  
Lubab Ahmed Tawfeeq ◽  
Eman S. Harba

Three-dimensional (3D) reconstruction from images is a most beneficial method of object regeneration by using a photo-realistic way that can be used in many fields. For industrial fields, it can be used to visualize the cracks within alloys or walls. In medical fields, it has been used as 3D scanner to reconstruct some human organs such as internal nose for plastic surgery or to reconstruct ear canal for fabricating a hearing aid device, and others. These applications need high accuracy details and measurement that represent the main issue which should be taken in consideration, also the other issues are cost, movability, and ease of use which should be taken into consideration. This work has presented an approach for design and constructed a low-cost three-dimensional object scanner. We have proposed a 3D canal reconstruction system (ear or nose) based on using 2D images for reconstruction 3D object. A low-cost EndoScope with a proposed program based upon utilized the segmentation algorithm type “Distance Regularized Level” to segment active edges from images then generate mesh object in order to generate 3D structure for small canals or cracks. The results show good accuracy of the reconstructed object in both details and their measurements which are related to the success in the reconstruction of algorithm that yields good three-dimensional meshes object.  


2007 ◽  
Vol 88 ◽  
pp. S203
Author(s):  
S. Bocca ◽  
E. Ragulin ◽  
L. Stadtmauer ◽  
A. Abuhamad ◽  
S. Oehninger

2020 ◽  
Vol 64 (5) ◽  
pp. 50405-1-50405-5
Author(s):  
Young-Woo Park ◽  
Myounggyu Noh

Abstract Recently, the three-dimensional (3D) printing technique has attracted much attention for creating objects of arbitrary shape and manufacturing. For the first time, in this work, we present the fabrication of an inkjet printed low-cost 3D temperature sensor on a 3D-shaped thermoplastic substrate suitable for packaging, flexible electronics, and other printed applications. The design, fabrication, and testing of a 3D printed temperature sensor are presented. The sensor pattern is designed using a computer-aided design program and fabricated by drop-on-demand inkjet printing using a magnetostrictive inkjet printhead at room temperature. The sensor pattern is printed using commercially available conductive silver nanoparticle ink. A moving speed of 90 mm/min is chosen to print the sensor pattern. The inkjet printed temperature sensor is demonstrated, and it is characterized by good electrical properties, exhibiting good sensitivity and linearity. The results indicate that 3D inkjet printing technology may have great potential for applications in sensor fabrication.


2017 ◽  
Vol 68 (3) ◽  
pp. 453-458 ◽  
Author(s):  
Daniel Besnea ◽  
Alina Spanu ◽  
Iuliana Marlena Prodea ◽  
Gheorghita Tomescu ◽  
Iolanda Constanta Panait

The paper points out the advantages of rapid prototyping for improving the performances/constructive optimization of mixing devices used in process industries, here exemplified to propeller types ones. The multidisciplinary optimization of the propeller profile affords its design using parametric CAD methods. Starting from the mathematical curve equations proposed for the blade profile, it was determined its three-dimensional virtual model. The challenge has been focused on the variation of propeller pitch and external diameter. Three dimensional ranges were manufactured using the additive manufacturing process with Marker Boot 3D printer. The mixing performances were tested on the mixing equipment measuring the minimum rotational speed and the correspondent shaft torque for complete suspension achieved for each of the three models. The virtual and rapid prototyping method is newly proposed by the authors to obtain the basic data for scale up of the mixing systems, in the case of flexible production (of low quantities), in which both the nature and concentration of the constituents in the final product varies often. It is an efficient and low cost method for the rapid identification of the optimal mixing device configuration, which contributes to the costs reduction and to the growing of the output.


2021 ◽  
Vol 10 (7) ◽  
pp. 460
Author(s):  
Mario Matthys ◽  
Laure De Cock ◽  
John Vermaut ◽  
Nico Van de Weghe ◽  
Philippe De Maeyer

More and more digital 3D city models might evolve into spatiotemporal instruments with time as the 4th dimension. For digitizing the current situation, 3D scanning and photography are suitable tools. The spatial future could be integrated using 3D drawings by public space designers and architects. The digital spatial reconstruction of lost historical environments is more complex, expensive and rarely done. Three-dimensional co-creative digital drawing with citizens’ collaboration could be a solution. In 2016, the City of Ghent (Belgium) launched the “3D city game Ghent” project with time as one of the topics, focusing on the reconstruction of disappeared environments. Ghent inhabitants modelled in open-source 3D software and added animated 3D gamification and Transmedia Storytelling, resulting in a 4D web environment and VR/AR/XR applications. This study analyses this low-cost interdisciplinary 3D co-creative process and offers a framework to enable other cities and municipalities to realise a parallel virtual universe (an animated digital twin bringing the past to life). The result of this co-creation is the start of an “Animated Spatial Time Machine” (AniSTMa), a term that was, to the best of our knowledge, never used before. This research ultimately introduces a conceptual 4D space–time diagram with a relation between the current physical situation and a growing number of 3D animated models over time.


2012 ◽  
Vol 497 ◽  
pp. 89-93
Author(s):  
Liang Liang Yuan ◽  
Ke Hua Zhang ◽  
Li Min

In order to process heterotype hole of workpiece precisely, an open abrasive flow polish machine is designed, and the optimization design of machine frame is done for low cost. Firstly, basing on the parameters designed with traditional ways, three-dimensional force model is set up with the soft of SolidWorks. Secondly, the statics and modal analysis for machine body have been done in Finite element methods (FEM), and then the optimization analysis of machine frame has been done. At last, the model of rebuild machine frame has been built. Result shows that the deformation angle value of machine frame increased from 0.72′ to 1.001′, the natural frequency of the machine decreased from 75.549 Hz to 62.262 Hz, the weight of machine decreased by 74.178 Kg after optimization. It meets the strength, stiffness and angel stiffness requirement of machine, reduces the weight and cost of machine.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1145
Author(s):  
Prem. C. Pandey ◽  
Shubhangi Shukla ◽  
Roger J. Narayan

Prussian blue nanoparticles (PBN) exhibit selective fluorescence quenching behavior with heavy metal ions; in addition, they possess characteristic oxidant properties both for liquid–liquid and liquid–solid interface catalysis. Here, we propose to study the detection and efficient removal of toxic arsenic(III) species by materializing these dual functions of PBN. A sophisticated PBN-sensitized fluorometric switching system for dosage-dependent detection of As3+ along with PBN-integrated SiO2 platforms as a column adsorbent for biphasic oxidation and elimination of As3+ have been developed. Colloidal PBN were obtained by a facile two-step process involving chemical reduction in the presence of 2-(3,4-epoxycyclohexyl)ethyl trimethoxysilane (EETMSi) and cyclohexanone as reducing agents, while heterogeneous systems were formulated via EETMSi, which triggered in situ growth of PBN inside the three-dimensional framework of silica gel and silica nanoparticles (SiO2). PBN-induced quenching of the emission signal was recorded with an As3+ concentration (0.05–1.6 ppm)-dependent fluorometric titration system, owing to the potential excitation window of PBN (at 480–500 nm), which ultimately restricts the radiative energy transfer. The detection limit for this arrangement is estimated around 0.025 ppm. Furthermore, the mesoporous and macroporous PBN-integrated SiO2 arrangements might act as stationary phase in chromatographic studies to significantly remove As3+. Besides physisorption, significant electron exchange between Fe3+/Fe2+ lattice points and As3+ ions enable complete conversion to less toxic As5+ ions with the repeated influx of mobile phase. PBN-integrated SiO2 matrices were successfully restored after segregating the target ions. This study indicates that PBN and PBN-integrated SiO2 platforms may enable straightforward and low-cost removal of arsenic from contaminated water.


2020 ◽  
Author(s):  
Derek Schulte ◽  
Kyam Krieger ◽  
Carl W. Chin ◽  
Alexander Sonn
Keyword(s):  
Low Cost ◽  

Sign in / Sign up

Export Citation Format

Share Document