Magnetic Resonance Image Analysis for Brain CAD Systems with Machine Learning

Author(s):  
Hidetaka Arimura ◽  
Chiaki Tokunaga ◽  
Yasuo Yamashita ◽  
Jumpei Kuwazuru

This chapter describes the image analysis for brain Computer-Aided Diagnosis (CAD) systems with machine learning techniques, which could assist radiologists in the detection of such brain diseases as asymptomatic unruptured aneurysms, Alzheimer’s Disease (AD), vascular dementia, and Multiple Sclerosis (MS) by magnetic resonance imaging. Image analysis in CAD systems consists of image enhancement, initial detection, and image feature extraction, including segmentation. In addition, the authors review the classification of true and false positives using machine learning techniques, as well as the evaluation methods and development cycle for CAD systems.

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Alaa Khadidos ◽  
Adil Khadidos ◽  
Olfat M. Mirza ◽  
Tawfiq Hasanin ◽  
Wegayehu Enbeyle ◽  
...  

The word radiomics, like all domains of type omics, assumes the existence of a large amount of data. Using artificial intelligence, in particular, different machine learning techniques, is a necessary step for better data exploitation. Classically, researchers in this field of radiomics have used conventional machine learning techniques (random forest, for example). More recently, deep learning, a subdomain of machine learning, has emerged. Its applications are increasing, and the results obtained so far have demonstrated their remarkable effectiveness. Several previous studies have explored the potential applications of radiomics in colorectal cancer. These potential applications can be grouped into several categories like evaluation of the reproducibility of texture data, prediction of response to treatment, prediction of the occurrence of metastases, and prediction of survival. Few studies, however, have explored the potential of radiomics in predicting recurrence-free survival. In this study, we evaluated and compared six conventional learning models and a deep learning model, based on MRI textural analysis of patients with locally advanced rectal tumours, correlated with the risk of recidivism; in traditional learning, we compared 2D image analysis models vs. 3D image analysis models, models based on a textural analysis of the tumour versus models taking into account the peritumoural environment in addition to the tumour itself. In deep learning, we built a 16-layer convolutional neural network model, driven by a 2D MRI image database comprising both the native images and the bounding box corresponding to each image.


2017 ◽  
pp. 36-58 ◽  
Author(s):  
Anand Narasimhamurthy

Medical image analysis is an area which has witnessed an increased use of machine learning in recent times. In this chapter, the authors attempt to provide an overview of applications of machine learning techniques to medical imaging problems, focusing on some of the recent work. The target audience comprises of practitioners, engineers, students and researchers working on medical image analysis, no prior knowledge of machine learning is assumed. Although the stress is mostly on medical imaging problems, applications of machine learning to other proximal areas will also be elucidated briefly. Health informatics is a relatively new area which deals with mining large amounts of data to gain useful insights. Some of the common challenges in health informatics will be briefly touched upon and some of the efforts in related directions will be outlined.


Author(s):  
Ayushe Gangal ◽  
Peeyush Kumar ◽  
Sunita Kumari ◽  
Anu Saini

Healthcare is always a sensitive issue for all of us, and it will always remain. Predicting various types of health issues in advance can lead us to a better life. Various types of health problems are there like cancer, heart diseases, diabetes, arthritis, pneumonia, lungs disease, liver disease, and brain disease, which all are at high risk. To reduce the risk of health issues, some suitable models are needed for prediction. Thus, it became as a motivational factor for the authors to survey the existing literature on this topic thoroughly and have consequently to identify suitable machine learning techniques so that improvement can be possible while selecting a prediction model. In this chapter, concept of survey is used to provide the prediction models for healthcare issues along with the challenges associated with each model. This chapter will broadly cover the following: machine learning algorithms used in health industry, study various prediction models for Cancer, Heart diseases, Diabetes and Brain diseases, comparative study of various machine learning algorithms used for prediction.


2017 ◽  
Vol 140 ◽  
pp. 61-68 ◽  
Author(s):  
Markos G. Tsipouras ◽  
Nikolaos Giannakeas ◽  
Alexandros T. Tzallas ◽  
Zoe E. Tsianou ◽  
Pinelopi Manousou ◽  
...  

2021 ◽  
pp. 1-18
Author(s):  
Subhrangshu Das ◽  
Priyanka Panigrahi ◽  
Saikat Chakrabarti

Background: The total number of people with dementia is projected to reach 82 million in 2030 and 152 in 2050. Early and accurate identification of the underlying causes of dementia, such as Alzheimer’s disease (AD) is of utmost importance. A large body of research has shown that imaging techniques are most promising technologies to improve subclinical and early diagnosis of dementia. Morphological changes, especially atrophy in various structures like cingulate gyri, caudate nucleus, hippocampus, frontotemporal lobe, etc., have been established as markers for AD. Being the largest white matter structure with a high demand of blood supply from several main arterial systems, anatomical alterations of the corpus callosum (CC) may serve as potential indication neurodegenerative disease. Objective: To detect mild and moderate AD using brain magnetic resonance image (MRI) processing and machine learning techniques. Methods: We have performed automatic detection and segmentation of the CC and calculate its morphological features to feed into a multivariate pattern analysis using support vector machine learning techniques. Results: Our results using large patients’ cohort show CC atrophy-based features are capable of distinguishing healthy and mild/moderate AD patients. Our classifiers obtain more than 90%sensitivity and specificity in differentiating demented patients from healthy cohorts and importantly, achieved more than 90%sensitivity and >  80%specificity in detecting mild AD patients. Conclusion: Results from this analysis are encouraging and advocate development of an image analysis software package to detect dementia from brain MRI using morphological alterations of the CC.


Sign in / Sign up

Export Citation Format

Share Document