Development of an Interactive Virtual 3-D Model of the Human Testis Using the Second Life Platform

Author(s):  
Douglas R. Danforth

One of the strengths of a virtual environment is the ability to immerse the occupant into an environment that would otherwise be impossible. The primary focus of the author’s project in Second Life is to take advantage of this opportunity to explore novel approaches to medical education. Second Life can be used to model doctor-patient interaction, clinical diagnosis skills, and three dimensional molecular and cellular modeling of objects from individual molecules to whole organ systems, both healthy and diseased. Using the powerful building and scripting tools of the Second Life platform, the author has created a model of the human testis that students can fly through and interact with to understand how the anatomy and physiology of the testis work together to regulate sperm production. The anatomical and physiological interactions occurring during these processes are described in accompanying audio and text. The development of educational tools within the Second Life context is in its infancy. As the technology matures, the opportunities for education within Second Life will continue to expand as an important adjunct to traditional pedagogical approaches.

Author(s):  
Douglas R. Danforth

One of the strengths of a virtual environment is the ability to immerse the occupant into an environment that would otherwise be impossible. The primary focus of the author’s project in Second Life is to take advantage of this opportunity to explore novel approaches to medical education. Second Life can be used to model doctor-patient interaction, clinical diagnosis skills, and three dimensional molecular and cellular modeling of objects from individual molecules to whole organ systems, both healthy and diseased. Using the powerful building and scripting tools of the Second Life platform, the author has created a model of the human testis that students can fly through and interact with to understand how the anatomy and physiology of the testis work together to regulate sperm production. The anatomical and physiological interactions occurring during these processes are described in accompanying audio and text. The development of educational tools within the Second Life context is in its infancy. As the technology matures, the opportunities for education within Second Life will continue to expand as an important adjunct to traditional pedagogical approaches.


2015 ◽  
Vol 43 (2) ◽  
Author(s):  
Ritsuko Kimata Pooh ◽  
Asim Kurjak

AbstractRecent development of three-dimensional (3D) high definition (HD) ultrasound has resulted in remarkable progress in visualization of early embryos and fetuses in sonoembryology. The new technology of HDlive assesses both structural and functional developments in the first trimester with greater reliably than two-dimensional (2D) ultrasound. The ability to visualize not only fetal face, hands, fingers, feet, and toes, but also amniotic membranes, is better with volumetric ultrasound than 2D ultrasound. In this article, detailed and comprehensive structures of normal and abnormal fetuses depicted by 3D HDlive are presented, including various faces of Down’s syndrome and holoprosencephaly, as well as low-set ear and finger/toe abnormalities from the first trimester. Three-dimensional HDlive further “humanizes” the fetus, enables detailed observation of the fetal face in the first trimester as shown in this article, and reveals that a small fetus is not more a fetus but a “person” from the first trimester. There has been an immense acceleration in understanding of early human development. The anatomy and physiology of embryonic development is a field where medicine exerts greatest impact on early pregnancy at present, and it opens fascinating aspects of embryonic differentiation. Clinical assessment of those stages of growth relies heavily on 3D/four-dimensional (4D) HDlive, one of the most promising forms of noninvasive diagnostics and embryological phenomena, once matters for textbooks are now routinely recorded with outstanding clarity. New advances deserve the adjective “breathtaking”, including 4D parallel study of the structural and functional early human development.


2016 ◽  
Vol 19 (1) ◽  
pp. 101-114 ◽  
Author(s):  
Eman Gadalla ◽  
Ibrahim Abosag ◽  
Kathy Keeling

Purpose – This study aims to examine the nature and the potential use of avatar-based focus groups (AFGs) (i.e. focus groups conducted in three-dimensional [3D] virtual worlds [VWs]) as compared to face-to-face and online focus groups (OFGs), motivated by the ability of VWs to stimulate the realism of physical places. Over the past decade, there has been a rapid increase in using 3D VWs as a research tool. Design/methodology/approach – Using a two-phase reflective approach, data were collected first by using traditional face-to-face focus groups, followed by AFGs. In Phase 2, an online, semi-structured survey provided comparison data and experiences in AFGs, two-dimensional OFGs and traditional face-to-face focus groups. Findings – The findings identify the advantages and disadvantages of AFGs for marketing research. There is no evident difference in data quality between the results of AFGs and face-to-face focus groups. AFG compensates for some of the serious limitations associated with OFGs. Practical implications – The paper reflects on three issues, data quality, conduct of AFGs (including the moderator reflection) and participant experience, that together inform one’s understanding of the characteristics, advantages and limitations of AFG. Originality/value – This is the first paper to compare between AFGs, traditional face-to-face focus groups and OFGs. AFG holds many advantages over OFGs and even, sometimes, over face-to-face focus groups, providing a suitable environment for researchers to collect data.


2001 ◽  
Author(s):  
Colin S. Gregersen ◽  
M. L. Hull

Abstract Determining the force and moment components transmitted by the knee is useful both to understand the etiology of over-use knee injuries common in cycling [1] and also to assess how well different interventions protect against over-use injury. Because the loads thought to be primarily responsible for over-use knee injury are the non-driving moments (varus/valgus and internal/external axial moments) transmitted by the knee [2], a 3-D model is necessary for calculating these loads. To our knowledge, no study has developed a model that includes complete 3-D kinematics of the segments to calculate these loads. Consequently one objective of this study was to develop a complete, 3-D model to calculate the intersegmental knee loads during cycling. A second objective was to use this model to examine how simplifying assumptions affect the 3-D knee loads.


2000 ◽  
Author(s):  
Tianhong Zhou ◽  
Hongtan Liu

Abstract A comprehensive three-dimensional model for a proton exchanger membrane (PEM) fuel cell is developed to evaluate the effects of various design and operating parameters on fuel cell performance. The geometrical model includes two distinct flow channels separated by the membrane and electrode assembly (MEA). This model is developed by coupling the governing equations for reactant mass transport and chemical reaction kinetics. To facilitate the numerical solution, the full PEM fuel cell was divided into three coupled domains according to the flow characteristics. The 3-D model has been applied to study species transport, heat transfer, and current density distributions within a fuel cell. The predicated polarization behavior is shown to compare well with experimental data from the literature. The modeling results demonstrate good potential for this computational model to be used in operation simulation as well as design optimization.


Zootaxa ◽  
2017 ◽  
Vol 4244 (2) ◽  
pp. 277 ◽  
Author(s):  
LUCAS TERRANA ◽  
IGOR EECKHAUT

Eenymeenymyzostoma nigrocorallium n. sp. is the first species of myzostomid worm associated with black corals to be described. Endoparasitic specimens of E. nigrocorallium were found associated with three species of antipatharians on the Great Reef of Toliara. Individuals inhabit the gastrovascular ducts of their hosts and evidence of infestation is, most of the time, not visible externally. Phylogenetic analyses based on 18S rDNA, 16S rDNA and COI data indicate a close relation to Eenymeenymyzostoma cirripedium, the only other species of the genus. The morphology of E. nigrocorallium is very unusual compared to that of the more conventional E. cirripedium. The new species has five pairs of extremely reduced parapodia located on the body margin and no introvert, cirri or lateral organs. Individuals are hermaphroditic, with the male and female gonads both being located dorsally in the trunk. It also has a highly developed parenchymo-muscular layer on the ventral side, and the digestive system lies in the middle part of the trunk. A three-dimensional digital model of this worm’s body plan has been constructed whereby the external morphology and in toto views of the observed organ systems (nervous, digestive and reproductive) can be viewed on-screen: http://doi.org/10.13140/RG.2.2.17911.21923. 


2017 ◽  
Vol 17 (2) ◽  
pp. 1187-1205 ◽  
Author(s):  
Guangliang Fu ◽  
Fred Prata ◽  
Hai Xiang Lin ◽  
Arnold Heemink ◽  
Arjo Segers ◽  
...  

Abstract. Using data assimilation (DA) to improve model forecast accuracy is a powerful approach that requires available observations. Infrared satellite measurements of volcanic ash mass loadings are often used as input observations for the assimilation scheme. However, because these primary satellite-retrieved data are often two-dimensional (2-D) and the ash plume is usually vertically located in a narrow band, directly assimilating the 2-D ash mass loadings in a three-dimensional (3-D) volcanic ash model (with an integral observational operator) can usually introduce large artificial/spurious vertical correlations.In this study, we look at an approach to avoid the artificial vertical correlations by not involving the integral operator. By integrating available data of ash mass loadings and cloud top heights, as well as data-based assumptions on thickness, we propose a satellite observational operator (SOO) that translates satellite-retrieved 2-D volcanic ash mass loadings to 3-D concentrations. The 3-D SOO makes the analysis step of assimilation comparable in the 3-D model space.Ensemble-based DA is used to assimilate the extracted measurements of ash concentrations. The results show that satellite DA with SOO can improve the estimate of volcanic ash state and the forecast. Comparison with both satellite-retrieved data and aircraft in situ measurements shows that the effective duration of the improved volcanic ash forecasts for the distal part of the Eyjafjallajökull volcano is about 6 h.


2019 ◽  
pp. 172-192
Author(s):  
Reza Ghanbarzadeh ◽  
Amir Hossein Ghapanchi

Three Dimensional Virtual Worlds (3DVW) have been substantially adopted in educational and pedagogical fields worldwide. The current study conducted a systematic literature review of the published research relevant to the application of 3DVWs in higher education. A literature search was performed in eight high-ranking databases, and following scrutiny according to inclusion criteria, 164 papers were selected for review. The systematic literature review process was summarized, reviews undertaken by the authors, and results about the applicability of 3DVWs in higher education were extracted. A wide variety of application areas for the 3DVWs in higher education were found, and were classified into five main categories. Various 3DVW platforms and virtual environments used for educational goals were also identified. The results revealed Second Life as the most popular 3DVW platform in higher education. This study also found that by using 3DVW technology a wide range of virtual environments and virtual tools have been designed and applied in teaching and learning for higher education.


2012 ◽  
pp. 1207-1219
Author(s):  
Rosalyn Rufer ◽  
Ruifang Hope Adams

The purpose of this chapter is to adapt instructional strategies to virtual world learning environment in Second Life and reach more diverse learners with different learning styles. Part of the approach will focus on learners who are visual as compared to auditory and kinesthetic. Additionally, the approach will examine how changes in pedagogical methods can be used to reach diverse learners with different learning styles in virtual learning environments. The major topics address how styles of learning were considered in designing an instructional strategy and how differences in learning styles were rationalized via learning in a virtual world. Thus student success can be correlated to teaching pedagogy, and hence modified to reach diverse learners. Suggestions are included for adapting a cognitive process combined with multimedia design principles in a virtual world.


Sign in / Sign up

Export Citation Format

Share Document