Electricity Production from Small-Scale Photovoltaics in Urban Areas

Author(s):  
Constantinos S. Psomopoulos ◽  
George Ch. Ioannidis ◽  
Stavros D. Kaminaris

The interest in solar photovoltaic energy is growing worldwide. Today, more than 40GW of photovoltaics have been installed all over the world. Since the 1970s, the PV system price is continuously dropping. This price drop and the adaptation of feed-in tariffs at governmental or utility scale have encouraged worldwide application of small-scale photovoltaic systems. The objective of this chapter is to present the potential for electricity production focusing mainly on the benefits of small-scale installations in urban areas, along with the growth of the global photovoltaics market. The types of installation alternatives are described but the focus is on the rooftop installations due to their simplicity and relatively low cost for urban areas. Electricity production data are presented together with their technical characteristics. Furthermore, analysis of the cost reduction is attempted and the benefits gained from the implementation of small-scale systems are also presented, demonstrating the sustainability role they will play.

Author(s):  
Constantinos S. Psomopoulos ◽  
George Ch. Ioannidis ◽  
Stavros D. Kaminaris

The interest in solar photovoltaic energy is growing worldwide. Today, more than 40GW of photovoltaics have been installed all over the world. Since the 1970s, the PV system price is continuously dropping. This price drop and the adaptation of feed-in tariffs at governmental or utility scale have encouraged worldwide application of small-scale photovoltaic systems. The objective of this chapter is to present the potential for electricity production focusing mainly on the benefits of small-scale installations in urban areas, along with the growth of the global photovoltaics market. The types of installation alternatives are described but the focus is on the rooftop installations due to their simplicity and relatively low cost for urban areas. Electricity production data are presented together with their technical characteristics. Furthermore, analysis of the cost reduction is attempted and the benefits gained from the implementation of small-scale systems are also presented, demonstrating the sustainability role they will play.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 179
Author(s):  
Said Munir ◽  
Martin Mayfield ◽  
Daniel Coca

Small-scale spatial variability in NO2 concentrations is analysed with the help of pollution maps. Maps of NO2 estimated by the Airviro dispersion model and land use regression (LUR) model are fused with measured NO2 concentrations from low-cost sensors (LCS), reference sensors and diffusion tubes. In this study, geostatistical universal kriging was employed for fusing (integrating) model estimations with measured NO2 concentrations. The results showed that the data fusion approach was capable of estimating realistic NO2 concentration maps that inherited spatial patterns of the pollutant from the model estimations and adjusted the modelled values using the measured concentrations. Maps produced by the fusion of NO2-LCS with NO2-LUR produced better results, with r-value 0.96 and RMSE 9.09. Data fusion adds value to both measured and estimated concentrations: the measured data are improved by predicting spatiotemporal gaps, whereas the modelled data are improved by constraining them with observed data. Hotspots of NO2 were shown in the city centre, eastern parts of the city towards the motorway (M1) and on some major roads. Air quality standards were exceeded at several locations in Sheffield, where annual mean NO2 levels were higher than 40 µg/m3. Road traffic was considered to be the dominant emission source of NO2 in Sheffield.


2021 ◽  
Author(s):  
Madhura Yeligeti ◽  
Wenxuan Hu ◽  
Yvonne Scholz ◽  
Kai von Krbek

<p>Solar photovoltaic (PV) systems will foreseeably be an integral part of future energy systems. Land cover area analysis has a large influence on estimatiin of long-term solar photovoltaic potential of the world in high spatial detail. In this regard, it is often seen in contemporary works, that the suitability of various land cover categories for PV installation is considered in a yes/no binary response. While some areas like natural parks, sanctuaries, forests are usually completely exempted from PV potential calculations, other land over categories like urban settlements, bare, sparsely vegetated areas, and even cropland can principally support PV installations to varying degrees. This depends on the specific land use competition, social, economic and climatic conditions, etc. In this study, we attempt to evaluate these ‘factors of suitability’ of different land cover types for PV installations.</p><p>As a basis, the openly available global land cover datasets from the Copernicus Land Monitoring Service were used to identify major land cover types like cropland, shrubland, bare, wetlands, urban settlements, forests, moss and snow etc. For open area PV installations, with a focus on cropland, we incorporated the promising technology of ‘Agri-voltaics’ in our investigation. Different crops have shown to respond positively or negatively, so far, to growing under PV panels according to various experimental and commercial sources. Hence, we considered 18 major crops of the world (covering 85% of world cropland) individually and consequently, evaluated a weighted overall suitability factor of cropland cover for PV, for three acceptance scenarios of future.</p><p>For rooftop PV installations in urban areas, various socio-economic and geographical influences come in play. The rooftop area available and further usable for PV depends on housing patterns (roof type, housing density) which vary with climate, population density and socio-economic lifestyle. We classified global urban areas into several clusters based on combinations of these factors. For each cluster, rooftop area suitability is evaluated at a representative location using the land cover maps, the Open Street Map and specific characteristics of the cluster.</p><p>Overall, we present an interdisciplinary approach to integrate technological, social and economic aspects in land cover analysis to estimate PV potentials. While the intricacies may still be insufficient for planning small localized energy systems, this can reasonably benefit energy system modelling from a regional to international scale.</p>


2013 ◽  
Vol 60 (9) ◽  
pp. 3784-3795 ◽  
Author(s):  
Ye Zhao ◽  
Jean-Francois De Palma ◽  
Jerry Mosesian ◽  
Robert Lyons ◽  
Brad Lehman

Fault analysis in solar photovoltaic (PV) arrays is a fundamental task to protect PV modules from damage and to eliminate risks of safety hazards. This paper focuses on line-line faults in PV arrays that may be caused by short-circuit faults or double ground faults. The effect on fault current from a maximum-power-point tracking of a PV inverter is discussed and shown to, at times, prevent overcurrent protection devices (OCPDs) to operate properly. Furthermore, fault behavior of PV arrays is highly related to the fault location, fault impedance, irradiance level, and use of blocking diodes. Particularly, this paper examines the challenges to OCPD in a PV array brought by unique faults: One is a fault that occurs under low-irradiance conditions, and the other is a fault that occurs at night and evolves during “night-to-day” transition. In both circumstances, the faults might remain hidden in the PV system, no matter how irradiance changes afterward. These unique faults may subsequently lead to unexpected safety hazards, reduced system efficiency, and reduced reliability. A small-scale experimental PV system has been developed to further validate the conclusions.


Electronics ◽  
2018 ◽  
Vol 7 (7) ◽  
pp. 119 ◽  
Author(s):  
Muhammad Khan ◽  
Kamran Zeb ◽  
Waqar Uddin ◽  
P. Sathishkumar ◽  
Muhammad Ali ◽  
...  

Environment protection and energy saving are the most attractive trends in zero-carbon buildings. The most promising and environmentally friendly technique is building integrated photovoltaics (BIPV), which can also replace conventional buildings based on non-renewable energy. Despite the recent advances in technology, the cost of BIPV systems is still very high. Hence, reducing the cost is a major challenge. This paper examines and validates the effectiveness of low-cost aluminum (Al) foil as a reflector. The design and the performance of planer-reflector for BIPV systems are analyzed in detail. A Bi-reflector solar PV system (BRPVS) with thin film Al-foil reflector and an LLC converter for a BIPV system is proposed and experimented with a 400-W prototype. A cadmium–sulfide (CdS) photo-resistor sensor and an Arduino-based algorithm was developed to control the working of the reflectors. Furthermore, the effect of Al-foil reflectors on the temperature of PV module has been examined. The developed LLC converter confirmed stable output voltage despite large variation in input voltage proving its effectiveness for the proposed BRPVS. The experimental results of the proposed BRPVS with an Al-reflector of the same size as that of the solar PV module offered an enhancement of 28.47% in the output power.


2021 ◽  
Author(s):  
Nadia Ameli ◽  
Olivier Dessens ◽  
Matthew Winning ◽  
Jennifer Cronin ◽  
Hugues Chenet ◽  
...  

Abstract Finance is vital for the green energy transition, but the access to low cost finance is uneven as the cost of capital differs substantially between regions. This study shows how modelled decarbonisation pathways of developing economies are disproportionately impacted by assumptions around their cost of capital (WACC). For example, representing regionally specific WACC values indicates 35% lower green electricity production in Africa for a cost-optimal 2°C pathway. Moreover, results show that early convergence of WACC values for green and brown technologies in 2050 would allow Africa to reach net-zero emissions approximately 10 years earlier than when convergence is not considered. A “climate investment trap” arises for developing economies when climate-related investments remain chronically insufficient. Elements of sustainable finance frameworks currently present barriers to these finance flows and radical changes are needed so that capital is better allocated to the regions that most need it.


2019 ◽  
Vol 22 (4) ◽  
pp. 329-334
Author(s):  
Noora Saad Faraj Al-Dulaimi ◽  
Samara Saad Faraj Al-Dulaimi

Providing a clean and high quality drinking water to both rural as well as urban areas is a great challenge by itself, adding to it the large volume requirements of such water at high population areas means a very high cost for such industry because mainly of the cost of expensive commercially available adsorbent used in this process. This led inhabitants of the remote and/or rural areas to use less quality water with all its risks and health challenges. In this study, a locally collected rice husk is tested to be used as an alternative adsorbent to the expensive common commercial ones. Parameters like adsorbent dosage, initial concentration of turbidity, and pH level were tested to investigate their effects on the process. Treatment of synthetic turbid water was done after changing these parameters to measure the effect of each parameter alone and the results showed a set of parameters that can be used to achieve high efficiency of turbidity removal. The study concluded that rice husk can be used as a well cheap alternative adsorbent to reduce the river water turbidity due to its availability and low cost with a decent removal efficiency approaching 95%.


Author(s):  
Paul E. Nelson

Currently, transporting cargo into Outer Space is not only expensive, but a complicated and prolonged process. The Space Shuttles used today are inadequate, overused and obsolete. At this time, there are efforts all around the world to make Space more accessible. There have been many proposals to solve the Space transportation dilemma. One proposal is the creation of a Space Elevator. The Space Elevator would provide low-cost, easy access to Space by dramatically reducing the cost of sending cargo into Space. A $10-$100 per pound the Space Elevator would provide an astounding cost-saving compared to the tens of thousands of dollars per pound it costs today. This low-cost access to Space would make it possible to substantially increase the amount of cargo that could be sent into Space on a daily basis. The first part of this paper describes how the Space Elevator is expected to work, and the advantage of access to space via the SE versus using primarily rockets. A compendium of information from a variety of sources is included in order to explain how the Space Elevator would be designed, constructed, and how it could solve the problems of transporting cargo into Space easily, cheaply, and frequently. The Space Elevator is a relatively new topic in the area of realistic science concepts and was merely science fiction not too long ago. The Space Elevator (“SE”) concept has only been in the spotlight in the last five years due to the work of Dr. Bradley Edwards of Carbon Designs Inc. Acceptance of the SE will be a difficult task for many reasons. One of these is that most people do not know about the SE concept, and those who do, tend to have trouble believing it is possible to build. In order to determine the best way of integrating the SE concept into society, a survey was conducted at Darien High School. The survey included such topics as the naming of "The Space Elevator," and how best to get the younger generation interested in the idea. The second part of this paper describes how to utilize the survey results to further the SE concept.


2019 ◽  
Vol 32 ◽  
pp. 385-389 ◽  
Author(s):  
Pavel Atănăsoae ◽  
Radu Dumitru Pentiuc ◽  
Dan Laurențiu Milici ◽  
Elena Daniela Olariu ◽  
Mihaela Poienar

2018 ◽  
Author(s):  
Ibraheam Al-Aali ◽  
Vijay Modi

Soaring electricity demand from space cooling and excellent solar photovoltaics (PV) resources are creating an opportunity for the financial viability of low-emission solutions in Qatar that can compete with existing approaches. This study examines the big picture viability of combining large utility-scale PV with decentralized building-scale ice storage for cooling in Qatar. Qatar is found to have consistently high repeatable solar radiation intensity that nearly matches space cooling requirement. A means to exploit the low installed costs of PV, combined with low cost and long lifetime of ice storage (as opposed to batteries) are examined to meet space cooling loads. Space cooling is responsible for about 65% of Qatar’s annual electric load (which averaged 4.68 GW in 2016). While multiple gas prices are considered, a scenario with the current gas price of $3.33/MMBTU, a PV system of 9.7 GW capacity and an aggregate ice-storage capacity of 4.5 GWh could reduce the gas-fired power generation in Qatar by nearly 39%. Here, gas-fired generation capacity to meet current load exists and hence is not costed.


Sign in / Sign up

Export Citation Format

Share Document