Impact of Electrospun Biomimetic Extracellular Environment on Proliferation and Intercellular Communication of Muscle Precursor Cells

Author(s):  
Touseef Amna ◽  
M. Shamshi Haasan ◽  
Myung-Seob Khil ◽  
Inho Hwang

Nanotextured materials or nanomaterials offer diverse remarkable applications in various walks of life owing to their unique geometry. This chapter is focused on the synthesis and characterization of electrospun nanofibrous matrices as a novel biomimetic scaffold for the cultivation of cells and tissues; in particular muscle cells and tissues. Tissue engineering is exceedingly interdisciplinary branch of science which integrates the benefits of life sciences and medicine with those of engineering. In order to cultivate muscle cells in-vitro, it is necessary to have a 3D scaffold. In tissue engineering applications or even in 3D cell cultures, the biological cross talk between cells and the scaffold is controlled by the material properties and scaffold characteristics. This chapter provides a general overview of the common approaches and techniques used for designing nanofibrous scaffolds for culture of cells specifically muscle cells. The limitations and benefits of the tissue engineering are discussed.

2011 ◽  
Vol 343-344 ◽  
pp. 882-888
Author(s):  
Jun Ou ◽  
Yu Min Jiang ◽  
Zhan He Zhang

Silk fibroin (SF) and β-tricalcium phosphate (β-TCP) had been used in biomedical applications for these years. The potential of silk and β-TCP for application in tissue engineering is currently being explored. The purpose of this study was to prepare and characterize a 3D scaffold consisting of nano-β-TCP/SF composite. XRD and FT-IR analysis showed that predominant crystalline phase of calcium phosphate was β-TCP; a chelate effect between SF and Ca2+ was happened at complexing period of SF and β-TCP. The compressive strength of nano-β-TCP/SF composite was 42 MPa ± 0.12 MPa. In vitro cell cultivation experiment showed that the composite was a good matrix for the growth of osteoblasts. Conclusion: the incorporation of SF into nano-β-TCP can enhance both mechanical strength and bioactivity of the scaffold, which suggests that the β-TCP/SF composite may be a potential biomaterial for tissue engineering.


2015 ◽  
Vol 3 (5) ◽  
pp. 859-870 ◽  
Author(s):  
Linhao Li ◽  
Yuna Qian ◽  
Chongwen Lin ◽  
Haibin Li ◽  
Chao Jiang ◽  
...  

Silk middle gland extracted sericin protein based electrospun nanofibrous scaffolds with excellent biocompatibility have been developed for tissue engineering applications.


1990 ◽  
Vol 40 (5) ◽  
pp. 1043-1048 ◽  
Author(s):  
Marie-Helene Disatnik ◽  
Sanford R. Sampson ◽  
Asher Shainberg

2009 ◽  
Vol 15 (7) ◽  
pp. 1523-1532 ◽  
Author(s):  
Marc-Olivier Montjovent ◽  
Chiara Bocelli-Tyndall ◽  
Corinne Scaletta ◽  
Arnaud Scherberich ◽  
Silke Mark ◽  
...  

Author(s):  
Rajesh Pandiyan ◽  
Abimanyu Sugumaran ◽  
Sumathi Samiappan ◽  
Parameshwaran Sengottaiyan ◽  
Sivasankaran Ayyaru ◽  
...  

2014 ◽  
Vol 14 (04) ◽  
pp. 1450049 ◽  
Author(s):  
CIJUN SHUAI ◽  
ZHONGZHENG MAO ◽  
ZIKAI HAN ◽  
SHUPING PENG ◽  
ZHENG LI

Calcium silicate ( CaSiO 3) is a promising material due to its favorable biological properties. However, it was difficult to fabricate ceramic scaffolds with interconnected porous structure via conventional technology. In present study, CaSiO 3 scaffolds with totally interconnected pores were fabricated via selective laser sintering (SLS). The microstructure, mechanical and biological properties were examined. The results revealed that the powder gradually fused together with the reduction of voids and the elimination of particle boundary as the laser power increased in the range of 3–15 W with scanning electron microscope. Meanwhile the low-temperature phase (β- CaSiO 3) transformed into high-temperature phase (α- CaSiO 3) gradually, which decreased the mechanical properties of the obtained scaffolds. Besides, the compressive strength increased from 12.9 ± 2.34 MPa to 18.19 ± 1.24 MPa (the laser power is 12 w) and then decreased gradually with increasing laser power. In vitro biological properties of CaSiO 3 scaffolds sintered under optimal conditions indicated that the distribution of apatite mineralization became uniform as the amount of them increased after being immersed in simulated body fluids. In the meantime, the thin cytoplasmic extensions of MG-63 cells increased until formed a dense cell layer after 1–5 days of cell culture. The results suggested that the CaSiO 3 scaffold fabricated via SLS has potential application for bone tissue engineering.


Author(s):  
Ana Belén Bonhome-Espinosa ◽  
Fernando Campos ◽  
Daniel Durand-Herrera ◽  
José Darío Sánchez-López ◽  
Sébastien Schaub ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Daniel Aparecido Lopes Vieira da Cunha ◽  
Paulo Inforçatti Neto ◽  
Kelli Cristina Micocci ◽  
Caroline Faria Bellani ◽  
Heloisa Sobreiro Selistre-de-Araujo ◽  
...  

Scaffolds of poly(ε-caprolactone) (PCL) and their biocomposites with 0, 1, 3, and 5 wt.% Biosilicate® were fabricated by the generative manufacturing process coupled with a vertical miniscrew extrusion head to application for restoration of bone tissue. Their morphological characterization indicated the designed 0°/90° architecture range of pore sizes and their interconnectivity is feasible for tissue engineering applications. Mechanical compression tests revealed an up to 57% increase in the stiffness of the scaffold structures with the addition of 1 to 5 wt.% Biosilicate® to the biocomposite. No toxicity was detected in the scaffolds tested by in vitro cell viability with MC3T3-E1 preosteoblast cell line. The results highlighted the potential application of scaffolds fabricated with poly(ε-caprolactone)/Biosilicate® to tissue engineering.


2014 ◽  
Vol 900 ◽  
pp. 306-311 ◽  
Author(s):  
Xiu Lin Shu ◽  
Qing Shan Shi ◽  
Xiao Bao Xie ◽  
Xiao Mo Huang ◽  
Yi Ben Chen

In order to improvedβ-TCP biocompatibility and cell growth, was chosen to modify β-TCP matrices to produce a γ-PGA/β-TCP composite biomaterial. Then, the morphology, water uptake and retention abilities,in vitrodegradation property in the simulated medium, cytotoxicity of this novel γ-PGA/β-TCP composite is investigated. SEM shows that the γ-PGA/β-TCP composite has a porous structure. By increasing the percentage ofγ-PGA from 0% to 50%, the swelling ratio of the composite s was enhanced from 9.0%to 297%. These data suggested that the surface hydrophilicity, water absorption rate, and swelling ratio were improved by adding γ-PGA to the composite. In the cytocompatibility test, the density of MC3T3-E1 preosteoblasts cells on the PTCP1:1 leachates was almost 110% higher than that on the controls on day 3. Therefore, the γ-PGA/β-TCP composite scaffolds, due to their better hydrophilicity, cytocompatibility, and porous structure, are very promising biomaterials for tissure engineering applications.


Sign in / Sign up

Export Citation Format

Share Document