Numerical Study of Discrete Masonry Structures under Static and Dynamic Loading

Author(s):  
Rossana Dimitri ◽  
Giorgio Zavarise

Much of the world's architectural heritage consists of Unreinforced Masonry (URM) structures whose preservation is a topical subject. To prevent possible collapse of multi-block systems in hazardous conditions, a promising tool to investigate their structural response is represented by numerical modelling with the Discrete Element Method (DEM). Gothic buttresses of trapezoidal and stepped shapes are first analysed comparatively under static loading, defining the optimal configurations. Numerical results are verified against the analytical predictions of overturning and sliding resistances, based on a continuum approximation of masonry. The DEM is then successfully adopted to assess the first-order seismic behavior of arches and buttressed arches with different shapes as compared to predictions based on limit analysis. A systematic investigation on dynamic behavior failure domains and on modes of collapse of URM structures is finally performed for varying input parameters, as needed to gain more confidence on the numerical results.

2020 ◽  
Vol 10 (13) ◽  
pp. 4505 ◽  
Author(s):  
Anna Banas ◽  
Robert Jankowski

The paper presents the experimental and numerical results of the dynamic system identification and verification of the behavior of two footbridges in Poland. The experimental part of the study involved vibration testing under different scenarios of human-induced load, impulse load, and excitations induced by vibration exciter. Based on the results obtained, the identification of dynamic parameters of the footbridges was performed using the peak-picking method. With the impulse load applied to both structures, determination of their natural vibration frequencies was possible. Then, based on the design drawings, detailed finite element method (FEM) models were developed, and the numerical analyses were carried out. The comparison between experimental and numerical results obtained from the modal analysis showed a good agreement. The results also indicated that both structures under investigation have the first natural bending frequency of the deck in the range of human-induced excitation. Therefore, the risk of excessive structural vibrations caused by pedestrian loading was then analysed for both structures. The vibration comfort criteria for both footbridges were checked according to Sétra guidelines. In the case of the first footbridge, the results showed that the comfort criteria are fulfilled, regardless of the type of load. For the second footbridge, it was emphasized that the structure meets the assumptions of the guidelines for vibration severability in normal use; nevertheless, it is susceptible to excitations induced by synchronized users, even in the case of a small group of pedestrians.


2018 ◽  
Vol 55 (4) ◽  
pp. 652-657 ◽  
Author(s):  
Gabriel Murariu ◽  
Razvan Adrian Mahu ◽  
Adrian Gabriel Murariu ◽  
Mihai Daniel Dragu ◽  
Lucian P. Georgescu ◽  
...  

This article presents the design of a specific unmanned aerial vehicle UAV prototype own building. Our UAV is a flying wing type and is able to take off with a little boost. This system happily combines some major advantages taken from planes namely the ability to fly horizontal, at a constant altitude and of course, the great advantage of a long flight-time. The aerodynamic models presented in this paper are optimized to improve the operational performance of this aerial vehicle, especially in terms of stability and the possibility of a long gliding flight-time. Both aspects are very important for the increasing of the goals� efficiency and for the getting work jobs. The presented simulations were obtained using ANSYS 13 installed on our university� cluster system. In a next step the numerical results will be compared with those during experimental flights. This paper presents the main results obtained from numerical simulations and the obtained magnitudes of the main flight coefficients.


Heliyon ◽  
2020 ◽  
Vol 6 (12) ◽  
pp. e05752
Author(s):  
N. Vishnu Ganesh ◽  
Shumaila Javed ◽  
Qasem M. Al-Mdallal ◽  
R. Kalaivanan ◽  
Ali J. Chamkha

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4292
Author(s):  
Kirill Kabalyk ◽  
Andrzej Jaeschke ◽  
Grzegorz Liśkiewicz ◽  
Michał Kulak ◽  
Tomasz Szydłowski ◽  
...  

The article describes an assessment of possible changes in constant fatigue life of a medium flow-coefficient centrifugal compressor impeller subject to operation at close-to-surge point. Some aspects of duct acoustics are additionally analyzed. The experimental measurements at partial load are presented and are primarily used for validation of unidirectionally coupled fluid-structural numerical model. The model is based on unsteady finite-volume fluid-flow simulations and on finite-element transient structural analysis. The validation is followed by the model implementation to replicate the industry-scale loads with reasonably higher rotational speed and suction pressure. The approach demonstrates satisfactory accuracy in prediction of stage performance and unsteady flow field in vaneless diffuser. The latter is deduced from signal analysis relying on continuous wavelet transformations. On the other hand, it is found that the aerodynamic incidence losses at close-to-surge point are underpredicted. The structural simulation generates considerable amounts of numerical noise, which has to be separated prior to evaluation of fluid-induced dynamic strain. The main source of disturbance is defined as a stationary region of static pressure drop caused by flow contraction at volute tongue and leading to first engine-order excitation in rotating frame of reference. Eventually, it is concluded that the amplitude of excitation is too low to lead to any additional fatigue.


Nanomaterials ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 419 ◽  
Author(s):  
Abdullah H. Sofiyev ◽  
Francesco Tornabene ◽  
Rossana Dimitri ◽  
Nuri Kuruoglu

The buckling behavior of functionally graded carbon nanotube reinforced composite conical shells (FG-CNTRC-CSs) is here investigated by means of the first order shear deformation theory (FSDT), under a combined axial/lateral or axial/hydrostatic loading condition. Two types of CNTRC-CSs are considered herein, namely, a uniform distribution or a functionally graded (FG) distribution of reinforcement, with a linear variation of the mechanical properties throughout the thickness. The basic equations of the problem are here derived and solved in a closed form, using the Galerkin procedure, to determine the critical combined loading for the selected structure. First, we check for the reliability of the proposed formulation and the accuracy of results with respect to the available literature. It follows a systematic investigation aimed at checking the sensitivity of the structural response to the geometry, the proportional loading parameter, the type of distribution, and volume fraction of CNTs.


2009 ◽  
Vol 416 ◽  
pp. 514-518 ◽  
Author(s):  
Qing Long An ◽  
Yu Can Fu ◽  
Jiu Hua Xu

Grinding, characterized by its high specific energy consumption, may generate high grinding zone temperature. These can cause thermal damage to the ground surface and poor surface integrity, especially in the grinding of difficult-to-machine materials. In this paper, experimental and fem study on grinding temperature during surface grinding of Ti-6Al-4V with different cooling methods. A comparison between the experimental and numerical results is made. It is indicated that the difference between experimental and numerical results is below 15% and the numerical results can be considered reliable. Grinding temperature can be more effectively reduced with CPMJ than that with cold air jet and flood cooling method.


2017 ◽  
Vol 2017 ◽  
pp. 1-19 ◽  
Author(s):  
Roman Kvasov ◽  
Lev Steinberg

This paper presents the numerical study of Cosserat elastic plate deformation based on the parametric theory of Cosserat plates, recently developed by the authors. The numerical results are obtained using the Finite Element Method used to solve the parametric system of 9 kinematic equations. We discuss the existence and uniqueness of the weak solution and the convergence of the proposed FEM. The Finite Element analysis of clamped Cosserat plates of different shapes under different loads is provided. We present the numerical validation of the proposed FEM by estimating the order of convergence, when comparing the main kinematic variables with an analytical solution. We also consider the numerical analysis of plates with circular holes. We show that the stress concentration factor around the hole is less than the classical value, and smaller holes exhibit less stress concentration as would be expected on the basis of the classical elasticity.


Author(s):  
L. Almanza-Huerta ◽  
A. Hernandez-Guerrero ◽  
M. Krarti ◽  
J. M. Luna

The present paper provides a numerical study of a parametric analysis of a bayonet tube with a special type of extended surface during the laminar-turbulent transition. The working internal fluid is air. Attention is focused on the heat transfer characteristics of the tube. The results constitute a systematic investigation of the effect of the extended surface located along the annulus of the bayonet on the overall heat transfer rate. The effects of the variation of some parameters related to the extended surface aiming to attain the maximum heat transfer with the minimum pressure drop are discussed. Comparisons between designs with and without extended surface are also made.


2013 ◽  
Vol 397-400 ◽  
pp. 783-788
Author(s):  
Xing Wei Zhang ◽  
Chao Wang ◽  
Hang Liu

This paper investigates the aerodynamic forces of several plunging wing models by means of computational fluid dynamics. A finite volume method was used to solve the two-dimensional unsteady incompressible Navier-Stokes equations. The forces and power efficiency have been calculated and compared between sets of different models. Current work found that the nonsymmetrical moving can enhance the lift and thrust forces. The numerical results also prove that the flexible wing model can be use to improve the efficiency and reduce the input. Additionally, a new conceptual model for flapping wing mechanism with active deformation and adaptive nonsymmetrical driving motion is proposed base on the numerical results.


Sign in / Sign up

Export Citation Format

Share Document