Applications of AI in Financial System

Author(s):  
Santosh Kumar ◽  
Roopali Sharma

Role of computers are widely accepted and well known in the domain of Finance. Artificial Intelligence(AI) methods are extensively used in field of computer science for providing solution of unpredictable event in a frequent changing environment with utilization of neural network. Professionals are using AI framework into every field for reducing human interference to get better result from few decades. The main objective of the chapter is to point out the techniques of AI utilized in field of finance in broader perspective. The purpose of this chapter is to analyze the background of AI in finance and its role in Finance Market mainly as investment decision analysis tool.

2020 ◽  
pp. 23-30 ◽  
Author(s):  
Santosh Kumar ◽  
Roopali Sharma

Role of computers are widely accepted and well known in the domain of Finance. Artificial Intelligence(AI) methods are extensively used in field of computer science for providing solution of unpredictable event in a frequent changing environment with utilization of neural network. Professionals are using AI framework into every field for reducing human interference to get better result from few decades. The main objective of the chapter is to point out the techniques of AI utilized in field of finance in broader perspective. The purpose of this chapter is to analyze the background of AI in finance and its role in Finance Market mainly as investment decision analysis tool.


Healthcare ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 834
Author(s):  
Magbool Alelyani ◽  
Sultan Alamri ◽  
Mohammed S. Alqahtani ◽  
Alamin Musa ◽  
Hajar Almater ◽  
...  

Artificial intelligence (AI) is a broad, umbrella term that encompasses the theory and development of computer systems able to perform tasks normally requiring human intelligence. The aim of this study is to assess the radiology community’s attitude in Saudi Arabia toward the applications of AI. Methods: Data for this study were collected using electronic questionnaires in 2019 and 2020. The study included a total of 714 participants. Data analysis was performed using SPSS Statistics (version 25). Results: The majority of the participants (61.2%) had read or heard about the role of AI in radiology. We also found that radiologists had statistically different responses and tended to read more about AI compared to all other specialists. In addition, 82% of the participants thought that AI must be included in the curriculum of medical and allied health colleges, and 86% of the participants agreed that AI would be essential in the future. Even though human–machine interaction was considered to be one of the most important skills in the future, 89% of the participants thought that it would never replace radiologists. Conclusion: Because AI plays a vital role in radiology, it is important to ensure that radiologists and radiographers have at least a minimum understanding of the technology. Our finding shows an acceptable level of knowledge regarding AI technology and that AI applications should be included in the curriculum of the medical and health sciences colleges.


2021 ◽  
pp. 127-132
Author(s):  
Simone Natale

The historical trajectory examined in this book demonstrates that humans’ reactions to machines that are programmed to simulate intelligent behaviors represent a constitutive element of what is commonly called AI. Artificial intelligence technologies are not just designed to interact with human users: they are designed to fit specific characteristics of the ways users perceive and navigate the external world. Communicative AI becomes more effective not only by evolving from a technical standpoint but also by profiting, through the dynamics of banal deception, from the social meanings humans project onto situations and things. In this conclusion, the risks and problems related to AI’s banal deception are explored in relationship with other AI-based technologies such as robotics and social media bots. A call is made for initiating a more serious debate about the role of deception in interface design and computer science. The book concludes with a reflection on the need to develop a critical and skeptical stance in interactions with computing technologies and AI. In order not to be found unprepared for the challenges posed by AI, computer scientists, software developers, designers as well as users have to consider and critically interrogate the potential outcomes of banal deception.


Author(s):  
Pravin Shende ◽  
Nikita P. Devlekar

: Stem cells (SCs) show a wide range of applications in the treatment of numerous diseases including neurodegenerative diseases, diabetes, cardiovascular diseases, cancer, etc. SC related research has gained popularity owing to the unique characteristics of self-renewal and differentiation. Artificial intelligence (AI), an emerging field of computer science and engineering has shown potential applications in different fields like robotics, agriculture, home automation, healthcare, banking, and transportation since its invention. This review aims to describe the various applications of AI in SC biology including understanding the behavior of SCs, recognizing individual cell type before undergoing differentiation, characterization of SCs using mathematical models and prediction of mortality risk associated with SC transplantation. This review emphasizes the role of neural networks in SC biology and further elucidates the concepts of machine learning and deep learning and their applications in SC research.


Author(s):  
Nilofar Mulla, Dr. Naveenkumar Jayakumar

This study provides information about the use of artificial intelligence (AI) and machine learning (ML) techniques in the field of software testing. The use of AI in software testing is still in its initial stages. Also the automation level is lesser compared to more evolved areas of work.AI and ML can be used to help reduce tediousness and automate tasks in software testing. Testing can be made more efficient and smarter with the help of AI. Researchers recognize potential of AI to bridge the gap between human and machine driven testing capabilities. There are still number of challenges to fully utilize AI and ML techniques in testing but it will definitely enhance the entire testing process and skills of testers and will contribute in business growth. Machine learning research is a subset of overall AI research. The life-cycle of software is increasingly shortening and becoming more complicated. There is a struggle in software development between the competing pressures of developing software and meeting deadlines. AI-powered automated testing makes conducting full test suites in a timely manner on every change. In this article a detailed overview about the various applications of AI in software testing have been demonstrated. Also the implementation of machine learning in software testing has been discussed in detail and use of different machine learning techniques has been explained as well.


Author(s):  
Andrea Danyluk ◽  
Scott Buck

In August 2017, the ACM Education Council initiated a task force to add to the broad, interdisciplinary conversation on data science, with an articulation of the role of computing discipline-specific contributions to this emerging field. Specifically, the task force is seeking to define what the computing contributions are to this new field, in order to provide guidance for computer science or similar departments offering data science programs of study at the undergraduate level. The ACM Data Science Task Force has completed the initial draft of a curricular report. The computing-knowledge areas identified in the report are drawn from across computing disciplines and include several sub-areas of AI. This short paper describes the overall project, highlights AI-relevant areas, and seeks to open a dialog about the AI competencies that are to be considered central to a data science undergraduate curriculum.


Diagnostics ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1575
Author(s):  
Silvia Pecere ◽  
Sebastian Manuel Milluzzo ◽  
Gianluca Esposito ◽  
Emanuele Dilaghi ◽  
Andrea Telese ◽  
...  

The development of convolutional neural networks has achieved impressive advances of machine learning in recent years, leading to an increasing use of artificial intelligence (AI) in the field of gastrointestinal (GI) diseases. AI networks have been trained to differentiate benign from malignant lesions, analyze endoscopic and radiological GI images, and assess histological diagnoses, obtaining excellent results and high overall diagnostic accuracy. Nevertheless, there data are lacking on side effects of AI in the gastroenterology field, and high-quality studies comparing the performance of AI networks to health care professionals are still limited. Thus, large, controlled trials in real-time clinical settings are warranted to assess the role of AI in daily clinical practice. This narrative review gives an overview of some of the most relevant potential applications of AI for gastrointestinal diseases, highlighting advantages and main limitations and providing considerations for future development.


Sign in / Sign up

Export Citation Format

Share Document