Engineering and Art

Author(s):  
Sara B. Smith

This chapter per the author discusses challenges faced by first year pre-engineering students. Also discussed are several topics taught within the curriculum including: the engineering design process, sketching, measurement, the elements and principles of design, and three-dimensional modeling. The chapter proposes a design project for engineering students that would tie all of these concepts together to provide an additional learning opportunity for students and more relevant practice of skills like isometric sketching, creating three-dimensional computer-aided design models, and measurement. Samples of student work from the project are included.

Author(s):  
Sara B. Smith

This chapter discusses challenges faced by first year pre-engineering students. Also discussed are several topics taught within the curriculum including: the engineering design process, sketching, measurement, the elements and principles of design, and three-dimensional modeling. The chapter proposes a design project for engineering students that would tie all of these concepts together to provide an additional learning opportunity for students and more relevant practice of skills like isometric sketching, creating three-dimensional computer-aided design models, and measurement. Samples of student work from the project are included.


Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3325
Author(s):  
Valery Ochkov ◽  
Inna Vasileva ◽  
Ekaterina Borovinskaya ◽  
Wladimir Reschetilowski

This paper considers an approach towards the building of new classes of symmetric closed curves with two or more focal points, which can be obtained by generalizing classical definitions of the ellipse, Cassini, and Cayley ovals. A universal numerical method for creating such curves in mathematical packages is introduced. Specific aspects of the provided numerical data in computer-aided design systems with B-splines for three-dimensional modeling are considered. The applicability of the method is demonstrated, as well as the possibility to provide high smoothness of the curvature profile at the specified accuracy of modeling.


1990 ◽  
Vol 68 (4) ◽  
pp. 1707-1716 ◽  
Author(s):  
F. G. Spinale ◽  
B. A. Carabello ◽  
F. A. Crawford

Right ventricular (RV) volumetric and morphological analysis is complicated by the trabeculations and geometric configuration of the RV chamber. To improve RV analysis, custom computer-aided design programs were employed to obtain RV volumes and three-dimensional models from biplane ventriculograms. Biplane RV ventriculograms were analyzed from 14 anesthetized dogs and 22 RV casts. Computed volumes were highly correlated with reference RV volumes (r = 0.98, n = 36, P less than 0.01) with a range of 5-73 ml. Three-dimensional wire-frame and solid models constructed from the ventriculographic images provided excellent detail and a new perspective in chamber shape. This modeling technique was then used to examine RV volumes, geometric conformation, and regional shortening in 10 pigs during inotropic stimulation and preload reduction. Changes in RV volumes, ejection fraction, and regional motion were detected as well as alterations in chamber conformation. In summary 1) computer-aided design offers an accurate and simplified means to compute RV volumes using basic microcomputer equipment, and 2) three-dimensional reconstruction provided a unique view of RV geometry and a means to examine regional RV function.


2020 ◽  
Vol 46 (2) ◽  
pp. 44-51
Author(s):  
Daniel P. Kelly ◽  
Cameron D. Denson

Engineering graphics education has long been a required component of technology and engineering education at the university level. In middle and high schools, the number of computer-aided design (CAD) programs continue to proliferate and grow. Lacking in the research related to these programs is the effect on non-cognitive factors such as self-efficacy. Self-efficacy is a predictor of success and perseverance and is an important consideration in technology and engineering education. This research investigates the psychometric properties of an instrument designed to measure the three-dimensional modeling self-efficacy among middle and high school students. This study found the Three-Dimensional Modeling Self-Efficacy Scale to be a reliable measure within this population with strong evidence of validity. Based on these findings, the scale was revised, and recommendations for future study were made. This research begins to fill a gap not only in research related to engineering graphics self-efficacy but also within a pre-college population, especially those who are historically underrepresented in engineering disciplines, in this case, female students.


2020 ◽  
Vol 10 (4) ◽  
pp. 114
Author(s):  
Fábio A. O. Fernandes ◽  
Clauber Marques ◽  
Jovani Castelan ◽  
Daniel Fritzen ◽  
Ricardo J. Alves de Sousa

This paper reports pedagogical experiences and educational techniques in the field of Mechanics of Structures (Mechanical Engineering degree), resorting to computational tools. Several aspects are addressed, covering CAD (Computer-Aided Design) modelling systems to CAE (Computer-Aided Engineering) solutions, in terms of analysis and validation of mechanical resistance calculations. Therefore, structural mechanics fundamental concepts and mechanics of materials are also addressed. Particular focus is given on the development of curricula components related to Computer-Aided Design and Manufacturing. Doing so, three-dimensional structural modelling is applied to study the behaviour in selected simple case-studies where an external load is applied and the corresponding deflections are evaluated. Then, analytical and numerical analyses are performed and compared. During classes, patent aversion to solve analytical problems was clearly observed on the part of the students once calculus knowledge was required. The typical trend in engineering students, skipping the manual analytical methodology to solve a problem in order to go straight to numerical simulations via commercial Finite Element (FE) codes, was observed. The main focus of this work is, therefore, to determine the pedagogical effects of allying the analytical procedures and virtual simulators. It was possible to confirm the beneficial aspects of such methodology, considering that the regular engineering student has already a scientific basis on calculus and analytical process. Such knowledge will support mechanical project decisions, from model development to the analysis, and a sounding background to perform criticism of the results provided by the software.


2013 ◽  
Vol 391 ◽  
pp. 178-181
Author(s):  
Zhi Dong Huang ◽  
An Min Hui ◽  
Peng Chen ◽  
Yu Wang

The characteristics of high-order deformed elliptical gear is analyzed. The parameters of high-order deformed elliptical gear are chosen and calculated. The modeling method of high-order deformed elliptical gear is presented. The shape of pitch curve is determined. The position and orientation of gear teeth are clarified. The three-dimensional solid model of high-order deformed elliptical gear is achieved. The method and the result facilitate finite element analysis and numerical control machining simulation of high-order deformed elliptical gear.


2020 ◽  
Vol 64 (5) ◽  
pp. 50405-1-50405-5
Author(s):  
Young-Woo Park ◽  
Myounggyu Noh

Abstract Recently, the three-dimensional (3D) printing technique has attracted much attention for creating objects of arbitrary shape and manufacturing. For the first time, in this work, we present the fabrication of an inkjet printed low-cost 3D temperature sensor on a 3D-shaped thermoplastic substrate suitable for packaging, flexible electronics, and other printed applications. The design, fabrication, and testing of a 3D printed temperature sensor are presented. The sensor pattern is designed using a computer-aided design program and fabricated by drop-on-demand inkjet printing using a magnetostrictive inkjet printhead at room temperature. The sensor pattern is printed using commercially available conductive silver nanoparticle ink. A moving speed of 90 mm/min is chosen to print the sensor pattern. The inkjet printed temperature sensor is demonstrated, and it is characterized by good electrical properties, exhibiting good sensitivity and linearity. The results indicate that 3D inkjet printing technology may have great potential for applications in sensor fabrication.


Science Scope ◽  
2017 ◽  
Vol 041 (01) ◽  
Author(s):  
Nicholas Garafolo ◽  
Nidaa Makki ◽  
Katrina Halasa ◽  
Wondimu Ahmed ◽  
Kristin Koskey ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document